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you nor I nor anybody else knows what makes a mathematician tick. It is not
a question of cleverness. As I have already said, I know many mathematicians
who are far abler and cleverer than I am, but they have not been so lucky. An
illustration may be given by considering two miners. One may be an expert
geologist, but he does not find the golden nuggets that the ignorant miner does.

In some ways, a mathematician is not responsible for his activities. One
sometimes feels there is an inner self occasionally communicating with the
outer man. This view is supported by the statements made by H. Poincaré and
J. Hadamard about their researches. I remember once walking down St.
Andrews Street some three weeks after writing a paper. Though I had never
given the matter any thought since then, it suddenly occurred to me that a point
in my proof needed looking into.

I am very grateful to my inner self for his valuable help in the solution of
some important and difficult problems that I could not have done otherwise.

I commenced this talk by saying a toast had been drunk to me by the
Master and Fellows of St. John's College. I might conclude by reciting one sent
to me by Professor L. Moser. Of him, it was said that he was writing a book and
taking so long about it that his publishers became very much worried and went
to see him. He said he was very sorry about the delay, but he was afraid that
the book might have to be a posthumous one. Well, he was told, please hurry
up with it.

Moser’s toast was as follows:

Here's a toast to L. J. Mordell,
young in spirit, most active as well,
He'll never grow weary,

of his love, number theory,

The results he obtains are just swell.

ALGEBRAIC CHARACTERIZATION OF SOME
CLASSICAL COMBINATORIAL PROBLEMS

E. T. ORDMAN, University of Kentucky

1. Introduction. The numbers a,,

1 /20— 2
(1) Ay = — ’

n \n—1
known as the Catalan numbers, occur in a wide variety of combinatorial prob-
lems. For example, a, is the number of elements in the sets 4,, E,, S, where:
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A, is the collection of noncommutative nonassociative binary products of a
single generator taken # times. For instance,

44 = {a(a(00)), 6((a0)a), (a0)(a0), (a(aa))s, ((aa)a)a},

s0 @y = 5.

E, is the collection of ways in which a fixed regular (z+41)-gon in the plane
may be divided into triangles by #—2 diagonals which do not intersect in its
interior.

S, is the collection of sequences of 2z —2 terms (%1, X2, * * -, %2.—2), Where
each x;= *+1, subject to the conditions x14x:+ « -+ +x2,2=0 and x;+x,
+ -+ Fx20for 1Sk=Z2n-2.

We call a set Q=0;\JUQ,\JQ; - - - of Catalan type if formula (1) gives the
number of elements of Q.. Proofs that various sets (including the above) are of
Catalan type appear for instance in [1], [4], [5, Problem 7], [6], and [10,
Problems 54, 83, 84]. Our object is to study the algebraic structure underlying
sets of Catalan type, in order to help recognize such sets and answer some re-
lated questions. We shall not reproduce a proof that formula (1) gives the
number of elements of 4, but we shall prove that 4,, E,, and S, may be placed
in one-one correspondence.

1.2. Published proofs that a given set Q is of Catalan type sometimes set up
a one-one map between Q, and 4, or some other set known to have the desired
number of elements; more often they establish that Q; has one element and
establish the recurrence (2)

) > GGnt = n (sumfor1 £ ks n—1),

where Q, has ¢, elements. Since ¢; =1 and the q; satisfy this recurrence, ¢, =a»
by induction. Recurrence (2) is most often established by providing a way of
“factoring” an element of Q, uniquely as an element of Qi and an element of
Qn—r, for some k. Thus the set Q is provided with a multiplication. For instance,
multiplication in 4 =4,\J4,U - - - is given by (b, ¢)—(b)(c) for every b and ¢
in A (the parentheses around b or ¢ being omitted if it is in 4,). In the future,
we shall write the product of b and ¢ simply as b¢, when no confusion will result.

1.3. The sets 4, E=E,\JE,\J - - -, and S=5US,J - - - have various
actions on them. We give some examples to be discussed later:

The operation “Mirror image” is a map M:4—A4. For instance M inter-
changes (a(aa))a and a((aa)a); but note M((aa))aa))=(aa)(aa). Clearly M?
=], the identity map on 4.

The operation “reflection in a vertical line” is a map M : E—E. Like M, it is
of order 2. The operation “rotation counterclockwise through 2w/(n+1) ra-
dians” is a map pn: E,—E,, with the property that pi*! is the identity map of E,.

S has a conspicuous map A:S—S of order 2, given by

>\(x1, Xy * * x2n—2) = (—xzn_z, —%om-3y, * * *, "xl)-

For instance, N(+1, +1, —1, —1, +1, —1)=(+1, —1, +1, +1, —1, —1).
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1.4. Problems. Two of the maps of 1.3, as well as other “reasonable” maps
we shall not study, fail to have various desirable properties. For instance, for
none of the published “multiplications” f: E, X E,,—E, . does a relation such as

3) Pnim (B, €) = f(pnb, pme),

forallbin E, and cin E,, hold. Might f be defined to make (3) hold?

It is easy to see that no one-one onto map between 4; and S; can carry M
to N; for M interchanges (aa)a with a(aa), while N preserves both (41, +1,
—1, —1) and (41, —1, 4+1, —1). Is there a “natural” map Ms:S—S corre-
sponding to M? How does it relate toN?

1.5. Section 2 is a discussion of the algebraic structure 4, characterizing the
structure itself, its automorphisms, and isomorphisms between it and other
structures. Section 3 applies these methods to E, solving the problem about p,
stated above (Theorem 3.3). Section 4 contains a discussion of S, in particular
the relation between M and A.

1.6. History. The sets A,, E,, S, and many others like them, have long
been well known. Dérrie [5, Problem 7] traces E, back to a 1751 problem of
Euler and 4, to an 1838 paper of Catalan. By 1859 Cayley [4] observed the
connection between 4, and the problem of enumerating certain graphs. A wide
variety of graph problems are connected with these numbers; similar numbers
appear for instance in Tutte [9]. An extensive bibliography appears in Brown
[3].

The problem of the number of elements in .S, is a special case of the ballot
problem. Elementary discussions of related problems occur in [6] and [10,
Problems 54, 83, 84]; a longer discussion and bibliography which includes
references to a number of equivalent problems appears in Tak4cs [8].

A number of other structures have also been put on the set 4; see for in-
stance [7], in which each 4, is made into a lattice.

2. Characterizations of the operation with no relations. Let us regard 4 as a
set with a binary operation and a generator a. We observe first that the only
automorphism of A4 is trivial.

2.1. THEOREM. Let f: A—A satisfy f(bc) =f(b)f(c), for all b and ¢ in A. Then
the following are equivalent:

(a) f is onto,

(b) f(a)=a,

(c) f is the identity map.

Proof. If f is onto, there is some b in 4 with f(b) =a. If b>%a, then b=cd for
some ¢ and d in 4 ; hence a =f(cd) =f(c) f(d). But since a cannot be factored, this
is impossible, so b=a as desired. Suppose next that f(a) =a. Clearly f(aa)
=f(a)f(a) =aa;also f((aa)a) =f(aa)f(a) = (aa)a, and by induction f(bc) =1(b) f(c)
=bc, so f is the identity map I: 4—A. Finally, I is clearly onto.

In 1.3 we defined the “mirror image” map M:4—A4. It is clear that M(a)
=aand M(bc) =M (c) M (b) forallband cin 4.
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2.2. THEOREM. Let F:A—A satisfy f(bc) =f(c)f(b). Then the following are
equivalent:

(a) f s onto,

(c) f(a)=a,
(d) f=M.

Proof. Similar to 2.1.

M is the unique anti-automorphism of A. Clearly, no other map arising later
in the discussion can be an automorphism or anti-automorphism.

A set Q with a binary operation * is isomorphic to A4 if there is a one-one
onto map f from Q to A4 such that f(b * ¢) =f(b) f(c) for all b and ¢ in Q. Then
f is an isomorphism; a one-one onto map g such that g(b * ¢) =g(c)g(d) will be
called an anti-isomorphism.

2.3. CorOLLARY. Suppose (Q, *) is isomorphic to A. Then there is a unique
isomorphism f: Q—A and a unique anti-isomorphism Mf:Q—A.

Proof. 1f fi:Q—A and f,:Q—A are isomorphisms, fif; ' and fofi! are auto-
morphisms of 4. Hence fifs'=I=f,fi' and fo=fi. Similarly if g and g, are
anti-isomorphisms, g,g; ' =I=g,g7 "' and g =g. If an isomorphism f exists, then
Mf(bc) = M(f(b)f(c)) = Mf(c) Mf(b) so M is the unique anti-isomorphism.

To make it easier to recognize structures isomorphic to 4, we introduce
some terminology. If Q is a set and f is an operation f: QX (Q—(Q, the structure
(Q, f) will be called graded if Q=0,UQ,\J - - - and f(Qn X Qn) CQnsm for all
n, m=1. If Q and R are graded sets, a map g:Q—R will be called level-preserv-
ing if g(Q,) CR, for all .

If (Q, f) is graded, Qi is not in the image f(Q X Q). We say factoring is possible
if f:QXQ—Q\Q:is onto. We say factoring is unique if f: Q X 0—Q\Q: is both onto
and one-one; that is, if each ¢ not in Q1 has a unique expression ¢=f(b, ¢). In
particular, factoring in 4 is unique.

2.4. THEOREM. Let (Q, *) be a graded structure in which factoring is unique.
Suppose Qi has exactly one element. Then there is a level-preserving isomorphism
from (Q, *) to A.

Proof. The unique map f:Q;— 4, is one-one onto. If f has been defined to be
one-one, onto, level-preserving, and to preserve multiplication (when possible)
from Q\JQ,\J . - - UQ, to 4,\J - - - UA4,, define f on Q.11 by f(q) =f(b)f(c),
where ¢=0 # ¢. This is well-defined since Q has unique factorization, and f(g) is
in An41 since f is level-preserving on b and ¢ by the induction hypothesis. Finally
f:Qny1—A4 441 1s one-one onto; for if d is in A1, then d can be uniquely written
d=wuv, and by the induction hypothesis there are unique b and ¢ with f(b) =u
and f(c) =v. Now b * ¢ is in Qn41 and is the unique element of Q,,1 mapping to
uy=d.

It would be possible to change the hypotheses of 2.4 so that (Q, *) is not
graded, but * :QXQ—»Q\{a} is one-one, for some ¢ in Q. One would then have
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to require that a “generate” Q, to avoid the possibility of elements of “infinite
length.”

2.5. CorOLLARY. Let (Q, *) be a graded structure isomorphic to A. Then the
isomorphism is level-preserving.

Hence if (Q, #) is a graded structure isomorphic to 4, the isomorphism is
one-one onto between Q. and A4,.; thus Q, must have ¢, elements. There is a
partial converse to this:

2.6 THEOREM. Let (Q, *) be a graded structure in which factoring is possible.
Suppose Qn has a, elements, for all n. Then factoring is unique and (Q, *) is iso-
morphic to A.

Proof. We must merely observe that for each > 1,
#: \J(Qr X Ont) = On (unionfor1 £ k= n—1)

is one-one onto. It is onto by hypothesis, since factoring is possible. However,
Q- has a, elements and the union on the left has

> hlni = Gn (sumfor1 =k Zn—-1)

elements by the standard recurrence formula for Catalan numbers. Hence to
be onto Qn, the given map must be one-one. Now since factors of an element of
Q» must lie in some QX Qn—i, factoring is unique.

2.7. Remark. A line of argument comparable to the above is possible for
some other combinatorial problems. For instance, let B, be the collection of
distinct ways of introducing parentheses in a product of % identical terms under
an operation presumed commutative but nonassociative. Let b, denote the
number of elements of B,. It is easy to check that b;=b,=b;=1 and bs=2
[since (xx)(xx) 5 ((xx)x)x]. An element of B may be factored uniquely “up to
commutativity” and thus it may be established that

bo= 2 bibas+c  (sumforl =<k <n/2),

where ¢=0if # is odd, ¢=23%b,/2(bs;s+1) if 7 is even. Note that if M were an
anti-automorphism of this structure, M(cd) =M (d)M(c)=M(c)M(d), so M
would be an automorphism and thus the identity map. If this fact is taken into
account, it is easy to rephrase 2.1 through 2.6 for this structure. Some history
of these numbers, together with a list of combinatorial problems they solve,
appears in Becker [2].

3. Dissections of a polygon. We regard E; as consisting of a (trivial) 2-gon;
E, contains the triangle, with no diagonals. By Theorem 2.4, we may provide a
one-one onto map e:E,—A4,, and thus prove that E, has a, elements, by de-
fining a graded multiplication in E for which factoring is unique. We give the
same operation as in [1], somewhat differently phrased. Let B and C denote
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two dissections of an (n41)-gon and an (m+1)-gon respectively; consider each
to have one edge marked as base. Take another edge NV in the plane; translate
B, C, and the new edge to form a triangle, whose sides in clockwise order are
(V) (base of B) (base of C). The result is combinatorially a triangulated (z+m
+1)-gon with base N. Figure 1 illustrates a typical B, C, and their product
B-C.

B-C
Fi1G. 1

We now observe that this product, denoted by - (usually omitted), has
unique factorization. Given an element of E,, n>1, with a base specified, the
base belongs to a unique triangle. Erase the base and let the other two sides of its
triangle be the bases for their respective subpolygons. Thus Fig. 1. B is the
product of two triangles; Fig. 1. C is the product of a trivial 2-gon by a triangle;
any polygon may be factored uniquely except the trivial 2-gon of E;.

By Theorem 2.4, there is now a unique isomorphism ¢: E—A4. We describe it
as follows: beginning at the center of the base, proceed clockwise around the
perimeter. Write down a parenthesis “(” whenever you pass an end of some
diagonal whose other end you have not yet passed. Write down an “a” whenever
you pass a midpoint of any side except the base. Write down a parenthesis “)”
whenever you pass an end of a diagonal whose other end you have passed previ-
ously. Thus Fig. 1. B-C maps to ((aa) (ae)) (e(aa)) while B and C map to
(aa) (aa) and a(aa) respectively.

Let M denote reflection in the perpendicular bisector of the base, and p, de-
note counterclockwise rotation through 27 /(z-1) radians. Now p: E—~E may be
defined by p(B) =p.(B) for B in E,. Let I: E—E denote the identity map. The
following lemmas are immediate.

3.1. LEMMA. Therelations M2=1I,pi*' =1, and Mp =p='M hold.

3.2. LEMMA. The order of pnis 1 for n=1and 2, is 2 for n=3, and is n+1 for
n> 3. Hence p has infinite order.

Proof. The dissection D of the (n+1) —gon in which all #—2 diagonals begin
at the left end of the base [hence, e~*((((aa)a) - - - )a)] has for #> 3 the property
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that D, p.D, p2D, - - -, piD are distinct. Hence the order of p,=n+1 for n>3.
The upper bound is given in 3.1, and the cases =1, 2, 3 follow by inspection.

We are now able to observe that p., #>3, cannot preserve any reasonable
graded multiplication on E.

3.3. THEOREM. Let *: EX E—E be any graded multiplication for which factor-
ing is possible. Let 7: E—E be any level-preserving map such that 'rl E,=p; for at
least one k=4. Then neither 7(BxC) =7(B)*1(C) nor 7(B+C) =7(C)*r(B) can hold
forall Band Cin E.

Proof. By Theorem 2.6, (E, *) is isomorphic to A. Thus 7 induces a level-
preserving map 74 of 4 whose order is not less than k+1. Hence 74 is not I or M,
and cannot preserve multiplication.

Let (E, -) be the previously defined binary structure on E, and e:(E, -)—A4
the unique isomorphism. It is clear by inspection that M (B-C) = M(C)- M(B);
hence M is the unique anti-automorphism of (E, -). Now eMe~! is an anti-auto-
morphism of 4, so eMe='= M. Let p4 denote epe~.

3.4. PROPOSITION: The relations M2 =1 and Mps=pi*M hoid. Also p4| A, has
order n+1forn=4and ps: A—A has infinite order.

Proof. Immediate; for Mps=eMelepe =eMpe'=ep~'Me'=p7'M, and
similarly for the other statements.

Since we cannot hope to find maps of 4 which preserve multiplication, the
collection of maps which anti-commute with M (i.e., maps 7: 4,—4., such that
Mr=7"1M) may appear worthwhile to study. We tentatively call such maps
rotations. Thus p4 is a rotation of infinite order on 4 and of order n+1 on A4,
forn=4.

We illustrate with a rotation of order 2, i.e., a map 8:4—4 such that M
= MPB. Define 3: A—A by the rules 8(a) =a and B(bc) = M (B(b)B(c)).

3.5. PROPOSITION. We have 2= M?=(MB)*=1, so {I, M, B, MB} is the
noncyclic four-group.
Proof. Clearly B(a) = M(a) = (MB)%(a) =a, so the relations desired hold on 4;.
Suppose they hold on 4y, for k<#, and let bc be in A,41. Now
B2 (be) = BM (B(5)B(c)) = B(MB(c)MB(D))
= M(BMB(c)BMB(b)) = MBMB(b) MBMB(c)
which is b¢ by the induction hypothesis that MBMB = I. Similarly
MBMB(be) = MBM[M(B(1)B()] = MBB®)B(C)
= MM (B*b)B*(c)) = be,

by the hypothesis 32=1.
We observe that I, M, 8, Mp are distinct since ((aa)a)a is carried by them to
((aa)a)a, a(a(aa)), a((aa)a), and (a(aa))a respectively.

4. Sequences of plus and minus. Given that S, has the same number of



968 E. T. ORDMAN [November

elements as A,, which we shall prove shortly, we have the following surprising
result:

4.1. THEOREM. Let * be any graded multiplication on S for which factoring is
possible. Then \:S—S does not preserve multiplication.

Proof. By Theorem 2.6, (S, *) is isomorphic to 4. By examples in 1.4 and 1.3
respectively, N is carried to neither M nor I. Hence \ is a map from (S, *) onto
(S, *) which is neither an automorphism nor an anti-automorphism.

We now introduce a graded multiplication is .S, making it isomorphic to 4
and thus establishing that S, has the same number of elements as 4,. Note that
S consists of the empty sequence ( ) and S, of the single sequence (41, —1). If
snisin S, and s, is in Sy, define sy*s, to be (+1, s,, —1, sm). For instance

(+1’ —17 +1: —'1) * (+17 —'1) = (+17 +1’ _17 +1, _1’ _17 +17 _1)

If s, has 2n—2 terms and s, has 2m —2 terms, then s.*s, has 2(n4m) —2 terms
as desired.

We now establish that factoring is unique in (S, *). Suppose (x1, %3, - * -,
Xsn—2) is in S,. Let 2k be the unique integer between 2 and 2n—2 such that
x14+%+ ¢ - - +x=0 and x;+x,+ - - - +x;>0 for <2k Then xy=—1 and

(21, 29, - -+, Ton—2) = (%, + +, Top—1) * (Targr, ©  * Lon—2),

where the first factor is in S; and the second in S,_i. This way of factoring is the
only one, since if
(41, 20, + -+, %1, — 1, Togga, * * +, Kan2)

= (%2, * * *, Tor—1) * (xzk+1, c ey Xopa),
then we must have x;+xe+ -+« Fxu=+14+(@0+ -+ +xop1) —1=+140
—1=0 and x;+%+ - - - +xj=+1+ @+ - - - +x)=+140>0 for j<2k.

This definition of multiplication seems noticeably skewed. It is reasonable to
introduce another one:

520 Sm = (Sn, +1, Sm, —1).
The same considerations as for * apply, and we have the relations
A(sn O Sm) = A(sn, +1, sm, —1) = (41, Asm, —1, Asa)
= ASm * ASp,
A(Sn*Sm) = + + + = ASp O ASp.

Let f«:(S, *)—A4 and fo:(S, 0)—4 denote the unique isomorphism from
(S, *) and (S, o) respectively to 4. Let ¢ denote f5'fx: (.S, *)—(S, o).

4.2. THEOREM. The mapping o is the unique isomorphism from (S, *) to
(S, 0); \ s the unique anti-isomorphism from (S, o) to (S, *). Hence Ao and o\ are
the unique anti-automorphisms of (S, *) and (S, o) respectively.
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Proof. Immediate from the uniqueness theorems of Section 2 and the formula
A(510Sm) =NSn¥NSn.

Since Ao is an anti-automorphism, (A\¢)2=1. Hence Ao =0\ and Ao~!=0A\.
It also follows that ¢ is a rotation of (S, *), as we have defined that term; for the
anti-automorphism of (S, *) is Ao and (\e)o =0~'(\s) as required.

By contrast, \o)A=0"1#¢ =A(\c), so \ is not a rotation by our definition.
This may, however, indicate a failure of the definition, for this is #of an intrinsic
property of A.

4.3. PROPOSITION. There exists a binary operation f:.SXS—S such that (S, f)
is isomorphic with A, and if M:(S, £)—(S, f) is the unique anti-automorphism,
then NM = M.

Proof. We must merely show that such an operation f can be chosen, out of
the very large number of operations on .S for which factoring is unique. We shall
first describe a map M :S—S.

SteP 1. Let M (s) =\(s) for all s in S for which N(s) #s.

SteP 2. If 7 is odd, S, has an even number of elements by recurrence (2) of
Section 1. Organize those not used in Step 1 into pairs (s, £), and let M(s)=tand
M) =s.

StEP 3. In Sa, choose arbitrarily a, elements s for which A(s) =s, and for
them let M(s) =s. At least a, such elements exist, since if ¢ is in S,, then (Z,
41, —1, N\t is such an s. However, as, —a, is even (since a2 —a., is even), so the
remaining elements for which A(s) = s may be paired as in Step 2.

We now describe an operation f:.SX S—S:

StEP 4. For sin S, let f(s, M(s)) be an element ¢ of S;, with M () =¢. This
can be done in a one-one onto fashion since there are a, pairs (s, M (s)).

SteP 5. Each other pair (s, £) in SX.S has an associated pair (M (f), M(s))
distinct from itself. Map (s, £) and (M (#), M(s)) to an arbitrarily chosen pair
f(s, £) and M(f(s, t)) of suitable grade.

It is now easy to check that M is the unique anti-automorphism of (.S, f) and
that N = M\

We examine briefly the map in 4 corresponding to ¢; let u=f«fg': 4—A4.
4.4. PROPOSITION. We have MuMuy=1:C—C; hence uM = Mu=*.

Proof. Clearly M =fi\afx", since fs\afs’ is an anti-automorphism of 4. Since
u=f+0f%", we have MuMu=fsNo~%0f5'=1.

Hence u is a rotation of 4. By observation of its behaviour on 4, this rota-
tion must have order at least 30; it is almost certainly infinite. We observe here
that neither u nor p4 is a power of the other, since

w(((ea)a)a) = fufo (((aa)a)a) = fu(+1, —1, +1, =1, +1, —1) = a(a(ac))

and u(a(a(aa))) = ((ea)a)a, but repeated application of pAI A4 to ((aa)a)a yields
in turn all five elements of A4, since the five Euler triangulations of the pentagon
are all rotated images of each other (one appears in Fig. 1.B).
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ARZELA’S DOMINATED CONVERGENCE THEOREM
FOR THE RIEMANN INTEGRAL

W. A. J. LUXEMBURG, California Institute of Technology

1. Introduction. Riemann’s definition ([14], p. 239) of a definite integral
gave rise to a number of important developments in analysis. In the course of
these developments a remarkable result due to C. Arzela ([1], 1885) marked the
beginning of a deeper understanding of the continuity properties of the Riemann
integral as a function of its integrand. The result of Arzeld we have in mind is the
so-called ARZELA DOMINATED CONVERGENCE THEOREM for the Riemann integral
concerning the passage of the limit under the integral sign. It reads as follows.

TaEOREM A (C. Arzeld, 1885). Let { f,,} be a sequence of Riemann-integrable
functions defined on a bounded and closed interval [a, b], which converges on [a, b]
to a Riemann-integrable function f. If there exists a constant M >0 satisfying
|fa®)| < M for all xE [a, b] and for all n, then limurs, [% | fu(x) —f(x)| dx=0. In
particular,

b b b
lim fal®)dx = lim fa(x)dx = f f(x)dz.

Usually, Arzeld's theorem is formulated as a result about term-by-term
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functional, and non-standard analysis. He edited Applications of Model Theory (Holt, Rinehart
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