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FREE TOPOLOGICAL GROUPS AND THE PROJECTIVE 
DIMENSION OF A LOCALLY COMPACT ABELIAN GROUP 

JOHN MACK, SIDNEY A. MORRIS AND EDWARD T. ORDMAN 

ABSTRACT. It is shown that a free topological group on a k.- 
space is a k.-space. Using this it is proved that if X is a k.-group 
then it is a quotient of a free topological group by a free topological 
group. A corollary to this is that the projective dimension of any 

k.-group, relative to the class of all continuous epimorphisms ad- 
mitting sections, is either zero or one. In particular the projective 
dimension of a connected locally compact abelian group or a com- 
pact abelian group is exactly one. 

1. Introduction. In [2] Graev showed that a free topological group on 
a compact Hausdorff space is a k.,-space. It was observed [6] that Graev's 
proof worked not only for free topological groups but also for groups with 
the maximum topology relative to a given compact set, and several 
applications to free products of topological groups were obtained [8], 

[9], [11], [12]. 
It is shown here that any group having the maximum topology with 

respect to a k,-space generating it algebraically is itself a k,-space. In 
particular a free topological group on a k,-space is a k,-space. Thus our 
result generalizes Graev's result and our proof, which relies on known 
facts about k.m-spaces, is easier than Graev's-or at least less delicate. 

Recently Nummela [11] showed that the projective dimension of a 
compact abelian group, relative to the class of epimorphisms admitting 
sections, is exactly one. This was done by proving that a compact abelian 
group is a quotient group of a free abelian topological group by a free 
abelian topological group. The proof used Theorem 10 of [2] which 
provides a condition under which a subgroup of a free topological group 
on a compact set is a free topological group. (In general, such a subgroup 
is a free group but may have the wrong topology to be a free topological 
group.) We generalize Theorem 10 of [2] and thus conclude that the pro- 
jective dimension of an abelian k.-group is zero or one. In particular, the 
projective dimension of a connected locally compact abelian group or a 
compact abelian group is exactly one. 
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2. Notation and preliminaries. We assume familiarity with the notions 
of free topological groups due to Markov [4] and Graev [2]. Given a 
completely regular space X we denote by FGX (ZGX) the Graev free 
(free abelian) topological group on X. 

Recall that a k.-space is a Hausdorff topological space with compact 
subsets X,, such that (i) X= Un=I X,7; (ii) X,+, D X, for all n; (iii) a subset 
A of X is closed if and only if A rXn is compact for all n. (For information 
on k,,-spaces see [5] and [13].) Whenever we say that a k.-space has 
decomposition X= U Xn, we mean that the Xn have properties (i), (ii) 
and (iii) above. 

We will use the following properties of kmO-spaces: the direct product of 
two k,,-spaces is a k,,-space; a quotient space of a k.-space is a k.-space; 
a closed subspace of a kmO-space is a k.-space; if a functionf defined on a 
km,-space X= U Xn is continuous on each Xn, then it is continuous on X; 
if X= U Xn is a k.-space then any compact subset Y of X is contained in 
some Xn; if X= U X,, is a km,-space and Y1, Y2, * * - is an increasing sequence 
of compact subsets of X such that each Xn is contained in some Ym then 
X also has decomposition X= U Yn. By way of examples, we note that 
every connected locally compact group and every compact space is a k.- 
space. 

In [111 Nummela introduced a concept of projective dimension for 
abelian topological groups. For our purposes it suffices to note that an 
abelian topological group is of projective dimension one if and only if it 
is not projective and it is a quotient group of a free abelian topological 
group by a free abelian topological group. 

If G is a group and X is a subset of G, we denote by Gn(X) the set of 
words in G of length not exceeding n with respect to X. We note that if 
G is a Markov or Graev free topological group on the Hausdorff space 
X then Gn(X) is closed in G for all n. (This fact is stated in [1] and can be 
proved in a similar manner to Theorem 2.2 of [6].) 

We will denote the identity of any group by e. 
If X is a topological group, FGX is the Graev free topological group 

on X and x and y are in X, then we denote by x * y the product in FGX of 
x and y. We denote by xy the product of x and y in X. 

3. Results. 

THEOREM 1. Let X be a km,-space and G a Hausdorff group which is 
generated algebraically by X and is such that the topology of G is the finest 
group topology iihich induces the same topology on X. Then G is a k.-space 
and a subset A of G is closed if and only if A n G,(X) is closed in GC(X), for 
all n. 
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PROOF. Let X= U X, be a decomposition of the k.0-space X into 
compact sets, so that G= U XI, where the sets Xn=Gn(Xn) are compact. 
We must show this is a decomposition of G as a k.-space. 

Let 7 be the given topology on G and define a topology r' on G as 
follows: A is a closed set in fr if and only if A r'Xn is compact, for all n. 
Clearly 7' is a Hausdorff topology and r'=) 2r. Indeed (G, 7') is a km-space. 
We wish to show that (G, r') is a topological group. To do this we must 
show that the map f: (G, 7') x (G, r')->*(G, 7') given by f(x, y)=xy-' is 
continuous. 

Since (G, 7r) is a kmD-space, (G, 7') x (G, T') is also a k.-space. Therefore, 
to show thatf is continuous we only have to show thatf is continuous on 
all compact subsets of (G, -r') x (G, '). 

Let K be a compact subset of (G, -r') x (G, 7'). Then Kcz K1 x K1, where 
K1 is a compact subset of (G, 7'). Since (G, 7') is a kmD-space with decom- 
position G=U Xn, we see that K1cX, for some n. Thus f(K)c 
f (K1 x K1) cf(Xn x 4') c A'2". Noting that K is compact and ' r, we see 
that K has the same induced topology as a subset of (G, 7') x (G, 7') as it 
has as a subset of (G, -r) x (G, -r). Similarly X2n has the same induced 
topology as a subset of (G, 7') as it has a subset of (G, 7). Thus, since 
(G, 7) is a topological group,f:K--'X2n is continuous. Sof is continuous 
on all compact subsets of (G, -r') x (G, -r'). Hence (G, -r') is a topological 
group. 

Now a subset A of X is closed in the topology induced on X from 
(G, -') if and only if A=A'nX where A'nXn is compact for every n. 
Since Xn c( xA, A' nXn compact implies A' rX,, is compact for every n. 
But X, c X, so A'rnX,=A't CXnX,=A flX, is compact, for each n. Now 
since Xc (G, r) is a k,,-space, A is closed in the topology induced on X 
from (G, r). Noting that -'2-3 we then see that (G, i-) and (G, 7') induce 
the same topology on X. However, by hypothesis, r is the finest group 
topology on G inducing the given topology on X and ' 27r. Hence '-r. 

Thus G is a km,-space and A is closed in G if and only if A nXCA is compact, 
for all n. 

Now let A be a subset of G such that A n7G,(X) is closed in GJ(X), for 
all n. Noting that Xnc Gn(A), we have that A nIX" is compact, for all n. 
Thus A is closed in G. The proof is complete. 

REMARK. We note that the sets G,(X) (or even X itself) need not be 
closed subsets of G. For example, if G is the additive group of reals and 
X=(-1, 1), then G,(X)-=(-n, n) which is not closed even though 
Theorem I clearly applies. 

COROLLARY 1. Let X be a k.-space and G one of the followt ing: (i) a 
Markov free topological group on X; (ii) a Markov free abelian topological 
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group on X; (iii) a Graev free topological group on X; (iv) a Graev free 
abelian topological group on X. Then G is a k.-space and a subset A of G is 
closed if and only if A n G (X) is closed in G,(X), for all n. 

THEOREM 2. Let X= U Xn be a decomposition of a km,,-space X into 
compact sets. Let G be a Hausdorff group generated algebraically by X and 
let Xn=G (X,). If G has the property that a subset A of G is closed in G if 
and only if A rlXn is compactfor all n, then the topology of G is the finest 
group topology which induces the given topology on X. 

PROOF. Let T be the given topology on G and i-' D the finest group 
topology inducing the given topology on X. By the proof of Theorem 1, 
A c G is closed in (G, i') if and only if each A rnXn is compact. But -r and 
-r' induce the same topology on X, hence on Xn and hence also on X8. 
Thus r'=r as desired. 

THEOREM 3. Let X= U Xn be a k,-space. Let Yc FGX be a subset such 
that Y- {e} freely generates G ( Y), the subgroup of FGX generated by Y. 
Suppose Y1, Y2, * * - is a sequence of compact subsets of Y such that Y= 
U Yn is a k,-decomposition of Y inducing the same topology on Y that Y 
inherits as a subset of FGX. Put X"= Gn(Xn) and Yn = Gn( YJ). Iffor each 
natural number n there is an m such that G( Y) rXni Ym, then G( Y) is the 
Graevfree topological group on Y and both G( Y) and Y are closed subsets 
of FGX. 

PROOF. It follows from the proof of Theorem 1 that, to prove G( Y) is 
closed in FGX, we only have to show that G( Y) rnXn is compact for each n. 
Now G( Y) rXn = G( Y) rXn rn ym = ym rlXn, and hence is compact. Thus 
G( Y) is closed in FGX. Similarly Y is closed in FGX. 

Using Theorem 2, to prove G( Y) is the Graev free topological group on 
Y, it suffices to show that a subset A of G( Y) is closed if A n yn is compact 
for all n. Consider A (Xn , for any n. There exists an m such that G( Y) r 
X4z YmandhenceA rCXn=A nrXnG( Y)=A rXnnr Y"'=(A r) Ym)nXrX. 
Since both A rn Y" and X' are compact, A r)Xn is compact, for all n. 
Thus A is a closed subset of FGX and the proof is complete. 

COROLLARY 2 [2, THEOREM 10]. Let X be a compact Hausdorff space 
and Y a compact subset of FGX wvhich freely generates G( Y). Iffor each 
n there is an m such that G( Y) r G,(X) C Gm( Y), then G( Y) is the Graev 
free topological group on Y and it is closed in FGX. 

PROOF. Apply Theorem 3 with Xn= X and Y,= Y for all n. We now 
generalize Proposition 1.6 of [11]. 
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THEOREM 4. Let the Hausdorff group X be a k.-space. Let y: FGX-*X 
be the canonical quotient morphism. Then the kernel K of yp is a Graev free 
topological group. 

PROOF. Since X is both a topological group and a k.-space there exists 
a sequence {Xn} of compact sets such that (i) X= U-= X,; (ii) X,jz X,+1, 
for all n; (iii) if x E Xn, and y E Xm then xy E Xn+m; (iv) x e Xn implies 
the inverse (in X) of x is in X,; (v) a subset A of X is closed if and only if 
A nXn is compact, for all n. 

Define a map q:XxX-'FGX by 4(x,y)=x *y * (xy)-1 where x eX, 
y E X, xy E X and (xy)-1 is the inverse in FGX of xy. Define B= q(X x X) 
and BA= b(Xn x Xv). Then each Bn is compact and B= U ??I B, It follows 
from Hall ([3, pp. 94-98]; see also [9, 1.3-1.6]) that K is freely generated 
by B-{e}. Put Bn=Gn(Bn) and Xn=Gn(Xn). We now prove (*). 

For each n there is an m such that 

(*) K Xn c Bnl. 

Let k E K, so k=xl' * x*Y, where xi E Xn and i n. 
(Note x-1 denotes the inverse in FGX of x,.) It is readily verified that 
k=bl ... b,, where 

b= (x** x.Ij-1) (x j)E) (XE xE))-, j > 1 

and b1=xl* (x41)-1. Here all operations inside parentheses are in X and 
all operations outside parentheses (inverting the third term and inverting 
x3 in the second term if e =-1) are in FGX. [Recall that (x4 ... xn) is the 
identity element.] We now observe that if j =+ 1, bj= O(xE * x-iqi, xj), 
while if e =-1, bj-(b(xE .. x, xj))-l the inverse being taken in FGX. 
We now note using the properties (iii) and (iv) of the sets Xn that, since 
each xi E Xn, each bj is a word of three letters each of which is in (at 
worst) Xn2 and thus b, e B,2. But then k E Gn(Bn2) c Bn , as desired, 
proving (*). 

Our next step is to show that B is closed in FGX. Now Br"Xnc: 
Bn(KnXn)c BnB`=BM Thus BrXn=Bm(rXn which is clearly 
compact. Hence B is closed in FGX. Therefore B is a k.-space with de- 
composition B=U (BrlX7"). Now for each n, Br)X"'cBm, for some m; 
conversely each B, being compact, is contained in some BrCXk. Thus the 
decomposition B= U Bn induces the same topology on B as B= U (BCrXn), 
which induces the subspace topology on BcFGX. 

Since we have now checked each hypothesis of Theorem 3, K is the 
Graev free topological group on B. 

COROLLARY 3. Let the Hausdorff abelian group X be a k.,-space Let 
ZGX be the Graev free abelian topological group on X and 1Y: ZGX--X the 
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canonical quotient morphism. Then the kernel K of T is a Graev free abelian 
topological group. 

REMARK. We note that by Remark 2 of [7], Theorem 3 remains true 
if "Graev" is replaced throughout by "Markov". 

COROLLARY 4. Let the Hausdorff abelian group X be a k.-space. Then 
the projective dimension of X is either zero or one. In particular, the pro- 
jective dimension of a connected locally compact abelian group or a compact 
abelian group is one. 

PROOF. This result follows immediately from Corollary 3 and the 
fact (Proposition 2.1 of [11]) that no locally compact abelian group is 
projective unless it is a discrete free abelian group. 
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