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SEQUENTAL CONDITIONS AND 
FREE TOPOLOGICAL GROUPS 

EDWARD T. ORDMAN AND BARBARA V. SMITH-THOMAS 

ABSTRACT. Most of the results in this paper concern relationships between sequen- 
tial properties of a pointed topological space (X, p) and sequential properties of the 
Graev free topological group on X. In particular, it is shown that the free group 
over a sequential ku-space is sequential, and that a nondiscrete sequential free 
group has sequential order equal to w1 (the first uncountable ordinal). The free 
topological group on a space X which includes a convergent sequence contains a 
closed subspace homeomorphic to S,, a previously studied homogeneous, zero-di- 
mensional sequential space. Finally, it is shown that there is no topological group 
homeomorphic to S.. 

0. Introduction. In this paper we discuss relationships between sequential proper- 
ties of a pointed topological space (X, p) and sequential properties of its Graev free 
topological group FG(X, p). Sequential spaces have been discussed in [D], [Frl], 
[Fr2], [A-Fr], [RI; we make heavy use of the space S. of sequential order co' 

constructed in [A-Fr]. The Graev free topological group FG(X, p) on a pointed 
Tychonoff space (X, p) was introduced in [Grl]; its topology has proved to be 
rather intractable, but in the last few years good results have been obtained in the 
case when X is a k.-space, that is, a weak union of countably many compact 
subsets [O1], [H-M], [MMO]. 

Definitions and preliminary results about sequential spaces appear in ?1; ?2 
contains preliminaries about free topological groups and about k.-spaces. ?3 
contains results about sequential properties of free topological groups and their 
consequences. The result that S, supports no group structure (answering in the 
negative a question of S. P. Franklin) appears in ?4. 

We thank S. P. Franklin for posing to us the question just mentioned, and for 
several helpful conversations and suggestions. 

1. Sequential spaces. Our definition of sequential spaces, sequential order, and 
the particular example S.,, are based on [A-Fr]. 

A subset U of a topological space X is sequentially open if each sequence 
converging to a point in U is eventually in U. The space X is sequential if each 
sequentially open subset of X is open. For each subset A of X, let s(A) denote the 
set of all limits of sequences of points of A. X is of sequential order 1 (X is also 
called a Fr&het space) if s(A) is the closure of A for every A. 
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We define higher sequential orders by induction. Let so(A) = A, and for each 
ordinal a = /8 + 1, let sa(A) = s(s,O(A)). If a is a limit ordinal, let s,(A) = 

U {s1f(A)J,8 < a). The sequential order of a sequential space X is the least ordinal 
a such that sa(A) is the closure of A for every subset A of X; this order always 
exists and does not exceed the first uncountable ordinal wo. 

By (S1, so) we mean a space consisting of a single convergent sequence 
S1 s2, S3 ... ., together with its limit point so taken as the basepoint. 

(S2, so) is a space obtained from SI by attaching to each isolated point sn of S, a 
sequence sn 1, Sn,2, Sn,,3 ... converging to sn. S2 may be viewed as a quotient of a 
disjoint union of convergent sequences; we give it the quotient topology. Induc- 
tively, we obtain the space (Sn+ , so) from (Sn, so) by attaching a convergent 
sequence to each isolated point of (Sn, so) and giving the resulting set the quotient 
topology. 

Finally, let (S., so) be the union of the sets S1 C S2 C S3 C ... with the weak 
union topology (a subset of S,, is closed if and only if its intersection with each Sn 
is closed in the topology of Sn). 

We shall use heavily the following facts from [Frl], [Fr2], and [A-Fr]: Sn is 
sequential of order n; S. is sequential of order co and is countable, homogeneous, 
and zero-dimensional. A closed subspace of a sequential space (of order a) is 
sequential (of order 6 a). A quotient of a sequential space is sequential. The 
pointed union (one-point union) of sequential spaces is sequential. The weak union 
of a nest of sequential spaces is sequential. 

By a theorem of Boehme [B], the cartesian product of a sequential space and a 
locally compact sequential space is again sequential. The local compactness condi- 
tion cannot be entirely removed: the cartesian product of two sequential spaces 
(even of a metric space and a sequential space) need not be sequential. Let (2, p) 
denote the rationals with basepointp = 0; let (W, q) denote the union of countably 
many copies of the unit interval [0, 1] with all the basepoints q = 0 identified and 
with the quotient topology. Then 2 is a sequential (in fact, a metric) space and W 
is sequential, but (2 x W, (p, q)) is not sequential. To see this think of 2 x W as 
an infinite book: each leaf is 2 x I and the spine is 2 x {q}. Pick a decreasing 
sequence of irrationals converging (in R) to 0, say a,, a2, .. .; in the nth leaf of the 
book pick a sequence {xn,i})I in 2 x (0, 1] which converges to (an, 0) in R x I. 
Then F = U, n{xn,}?) is sequentially closed, but not closed since (p, q) is in its 
closure. 

If X is any topological space, one may impose a sequential topology on it by 
taking as open sets of the new topology all the sequentially open sets of the original 
topology. We denote this new space by S(X) and call it the sequential coreflection 
of X. If X was sequential, S(X) will have the same topology as X; if X was not 
sequential, S(X) will have a strictly finer topology. For a more extensive discus- 
sion, see [D]. We will need the fact that if X is a topological space and A is a closed 
subset of X which is sequential in its inherited topology, then the topology which A 
inherits from S(X) is the same one it inherits from X. To see this, observe that 
S(X) has the same convergent sequences as X; the topology A inherits from X is 
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sequential by hypothesis and the topology it inherits from S(X) is sequential since 
A is closed in S(X). Thus both topologies are completely determined by their 
convergent sequences which are the same. 

2. Free topological groups and ku-spaces. Let (X, p) be a Tychonoff space with 
basepoint p. The Graev free topological group over (X, p) is a topological group 
FG(X, p) which is algebraically the free group on X\{p) and whose topology is the 
finest topology compatible with the group structure making the "insertion of 
generators" q: (X, p) -- FG(X, p) continuous (71(p) is the group identity e). 
FG(X, p) has the usual properties associated with the word "free"; in particular, 
any continuous pointed map f: (X, p) (G, e) into a topological group extends 
uniquely to a continuous homomorphismf: FG(X, p) -- (G, e). 

While the topology of FG(X, p) can be unpleasant in general [F-O-T], [H-MI, it is 
tractable if X is a k.-space. A topological space is called a k -space when it is the 
weak union of an increasing sequence of compact Hausdorff subspaces. The 

k.-spaces are very well behaved [S], [Fr-T], [O1]: they are closed hereditary, finitely 
productive, preserved by countable disjoint (or pointed) unions, and preserved by 
Hausdorff quotients. 

The spaces S,, and Sw are kw-spaces. 
If (X, p) is a k.-space, then FG(X, p) is topologically, (and algebraically) the weak 

union of the subspaces (FG(X, p))n consisting of words of reduced length < n. 
Further, each of the subspaces (FG(X, p)),, is the quotient of the product 
(X Up X)" (the cartesian product of n factors, each a pointed union of two copies 
of X) in a natural way. For details, see [O1]. 

If G is a topological group and A is a subset of G, we say that A generates G 
provided that A algebraically generates G and that G has the finest topology 
compatible with both the group structure and the original topology on A (that is, 
any strictly finer group topology on G would induce a strictly finer topology on the 
subset A). Theorem 1 of [MMO] states that if A generates G and A is a k.-space, 
then G is also a k.-space in a natural way. We will need the following related 
result: 

LEMMA 2.1. Let G be a topological group and A a subset which generates it and 
contains the identity. Suppose A is a k.-space. Then the map f: FG(A, e) -- (G, e) 
which extends the inclusion f: A c-* G is a quotient map. 

PROOF. Write A = Ui Ai, where the basepoint is in A1 and the Ai's form an 
increasing sequence of compact Hausdorff subspaces of A which determines the 
topology of A. Then by the formulation in [MMO], the ith compact Hausdorff 
subset of FG(A, e) (in a sequence determining the topology) may be taken to be the 
set of words which are products of at most i elements of q(Ai), or their inverses, 
and the ith compact subset of G, in the quotient topology underf, may be taken to 
be the set of products of at most i elements of fiq(A,), or their inverses. However, 
this is precisely the topology that G already has as a group generated by A, 
according to the proof of Theorem 1 of [MMO]. 
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3. Sequential conditions in free groups. 

THEOREM 3.1. A k,-space (X, p) is sequential if and only if its Graev free 

topological group, FG(X, p), is sequential. 

PROOF. Since (X, p) can be embedded as a closed subspace of FG(X, p), it must 

be sequential if FG(X, p) is. On the other hand, suppose (X, p) is sequential; write 

X = Ui Xi, where p is in X1 and the Xi's form an increasing sequence of compact 

Hausdorff subspaces of X which determines the topology of X. Then each of the 

spaces Xi up Xi is sequential and compact, so (by the theorem of Boehme) each 

(Xi Up Xi)2, and by induction each (X, U p Xi)", is sequential. Thus the weak union 

(in fact, k.-decomposition) (X up X)n = Uj (Xi up Xi)" is sequential for each n. 

It follows that the quotients (FG(X,P))n are sequential, and so the weak union 

FG(X, p) must be also. 

COROLLARY 3.2. Let G be a topological group generated (in our special sense) by a 

subset A. If A is a sequential kw-space, then so is G. 

PROOF. G is a k.-space by [MMO]. It is sequential since by Lemma 2.1, it is a 

quotient of the sequential space FG(A, p). 
The free product G * H of two topological groups [Gr2], [O2] is generated by 

G ue H. Hence: 

COROLLARY 3.3. Let G and H be topological groups which are sequential kw-spaces. 
Then their free product G * H is also a sequential kw-space. 

From Theorem 3.1 we see that there are free topological groups which are 

sequential. Naturally, one wonders what happens when the "k," requirement is 

dropped. As before, if the Graev free topological group FG(X, p) is sequential, then 

(X, p) must be sequential. The following example shows that the implication in the 

other direction fails: 
EXAMPLE 3.4. Let X be the pointed union of (2, p) with (W, q). Since 2 and W 

are sequential, so is X. But by [F-O-T], FG(X, p) contains a closed subspace 
homeomorphic to 2 x W; since 2 x W is not sequential, neither is FG(X, p). 

In Theorem 6.6 of [D], Dudley proves the following: let P denote the set of all 

real functions of a real variable, with the topology of pointwise convergence. Let 

S(P) denote the sequential coreflection of P. P is of course a topological group; 
however, assuming the continuum hypothesis, S(P) is not a topological group: 
addition of functions is discontinuous. If we use the space FG(X, p) of the above 
example, we do not need the continuum hypothesis to obtain an example of a 

topological group whose sequential coreflection is not a compatible topology: 
EXAMPLE 3.5. Let X be as in Example 3.4. FG(X, p) is a topological group. Since 

it is not sequential, its sequential coreflection S(FG(X,p)) has a strictly finer 

topology, which, however, induces the original topology on the closed sequential 
subset q(X). However, the free topology on FG(X,p) is the finest such topology 
compatible with the group operation; hence, the group operation is discontinuous 
in the topology of S(FG(X, p)). 
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We now turn to the problem of determining the sequential order of a free 
topological group. 

LEMMA 3.6. Let (X, p) be a Tychonoff space and suppose there is a sequence of 
distinct terms xl, X2, X3, ... in X converging to p. Let T be the set {p, xl, x2, ..}. 
Then FG(T, p) is contained in FG(X, p) as a closed subgroup. 

PROOF. For a similar result, see Proposition 5.3 of [O1]. We give an argument 
using a method of proof developed in [H-M-Tl. Let O3X be the Stone-Cech 
compactification of X. The inclusion T c X c 13X is an inclusion of the compact 
set T in the compact space fiX and yields continuous homomorphisms FG(T, p) -* 

FG(X, p) -+ FG( ,fX, p) where it may be easily checked (since FG( ,fX, p) is a 
k,,-space) that FG(T, p) -+ FG(,fX, p) is a closed embedding. Hence the image of 
FG(T, p) is closed in FG(X, p). 

THEOREM 3.7. Let (X, p) be a Tychonoff space and suppose there is a sequence of 
distinct terms X1, X2, X3, ... in X converging to p. Then there is a closed embedding 
f: (S,, so) -+ FG(X, p). 

PROOF. In view of Lemma 3.6, it will suffice to produce a closed embedding f: 

(S., so) - FG(T, p). Enumerate the sequences of S.,) as follows: denote the single 
sequence of S1 by t1 = sI, S2 S3, .... Denote the sequence of S2 converging to s, 
by t2 = SJ S1 5S,3. * Use a diagonalization process to enumerate all the 
sequences of S.,; the limits of the sequences t3, t4, t5, t6, t7, t8, . . . are respectively 

SIJl s2,1 l ,1 S1,2 S2, S3153. * The basic idea in constructing the functionf is to map 
each sequence ti into the set of words of FG(T,p) which have reduced length 
precisely i. Let f(so) = p. Let f(tl) = T\{p}, with f(s) = x,". Let f(t2)= 

X1X1, X1X2, X1X3, ... ; letf(t3) = x1x1x1, X1X1X2, x1x1x3, . .. ; and let 

f(t4) = X2X1X1X1, X2X2X2X2, x2x3x3x3, .... 

Inductively, if the sequence ti converges to Sj,k.m' then f(ti) = fSj,k. )X' 

f(5k.m)Xf,. .X., where r = i-(j + k + ... +m). Note that in view of the 
way the Sj,k... were enumerated and the way the i are defined, the exponents r are 
always positive, and the function f is clearly one-to-one. Since f was chosen to 
preserve sequential convergence and S.,, is sequential, f is continuous. That f is a 
closed embedding follows readily from the fact that the intersection of its image 
with each (FG(T, p)), consists of precisely n convergent sequences with their limits. 

COROLLARY 3.8. Let (X, p) be a Tychonoff space and suppose it contains some point 
which is the limit of a nonconstant sequence. Then FG(X, p) contains a closed 
subspace homeomorphic to (S,, so). 

PROOF. A convergent subsequence of distinct terms may be extracted from the 
given sequence in X. If the limit point is p, Theorem 3.7 applies. But by (Grl], 
FG(X, p) is (up to isomorphism of topological groups) independent of the choice of 
basepointp in X. 

Since (S,., so) is sequential of order w,, we obtain: 
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THEOREM 3.9. Let (X, p) be any Tychonoff space, and suppose FG(X, p) is sequen- 
tial but not discrete. Then it is sequential of order w1. 

PROOF. As was noted before Example 3.4, X is sequential, and X is not discrete 
(or FG(X, p) would be also). Hence X contains a nonconstant convergent sequence, 
and FG(X, p) contains a copy of (S.,, so). Hence the sequential order of FG(X, p) is 
at least w1; since that is the maximum possible sequential order of any space, it 
must be exactly w1. 

It would be nice to take Corollary 3.8 one step further, leading to the following: 
Question 3.10. Let FG(X, p) contain some nontrivial convergent sequence. Must it 

contain a copy of (S,, so)? A closed copy? 
An affirmative answer would follow from an affirmative answer to: 
Question 3.11. Let FG(X, p) contain a nontrivial convergent sequence. Need 

(X, p) contain a nontrivial convergent sequence? 

4. Nongroupability of S.,. Since we have now embedded (S<,, so) as a closed 
subspace of FG(X, p) for many spaces (X, p), it is natural to ask if it can be 
embedded as a subgroup. Clearly, the embedding given here does not make it a 
subgroup, since it includes all elements of q(T) c FG(T, p) but not all products of 
three such elements. In fact, no embedding can make it a subgroup. The following 
result is even stronger: 

THEOREM 4.1. There is no topological group homeomorphic to (S,, so). 

Loosely, our strategy will be to show that while diagonals generally fail to 
converge in S.,, in a topological group diagonals generally do converge. We need 
this lemma: 

LEMMA 4.2. In S. let yo be a fixed but arbitrary point. Let Y1, Y2, Y3, ... be a 
sequence converging to yo. For each i let Y,, , Yi,2' Yi3, ... be a sequence converging to 

y,. Suppose all the points yo, yi, yii are distinct. Then there is a function f: N -+ N (N 
is the natural numbers) with f(i) > i for all i, such that the sequence Yj,j), i = 

1, 2, 3, ... fails to converge. 

PROOF. We must describe the topology of S. in more detail. Consider the 
labelling of sequences in S, given in the proof of Theorem 3.7; let Tn denote the 
sequence t, and its limit. Instead of considering S. to be the weak union of the 
spaces S we may regard it as a quotient of the disjoint union of the sequences Tn. 
With this viewpoint, we see that a subset A of S., is closed if and only if every 
intersection A n T, is closed. If n # m, Tn and Tm intersect in at most one point, 
and if there is such a point it is the (unique) limit point of exactly one of T* or Tm. 
Each point of S. is the limit point of exactly one T, and, except for so, a nonlimit 
point of exactly one other. A sequence converges only if it is eventually in some T, 
and then, if it is not eventually constant, it converges to the limit point of that Tn. 

Now, Yo is the limit point of some Tn, say T7,s and the sequence Yj, y2, y, .Y.. iS 
eventually in T,O. Each yi is the limit point of some T7,,, say T,,, and the sequence 
Yi, Yi,2' Yi,3, ... is eventually in T,,. Pickf so that f(i) > i andyiXi) E T,,, for each i. 
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Nowyi,f(i) is a nonlimit point of Tn, for each i; hence at most two yi,J) lie in any T, 
the sequence Yifl,), i = 1, 2, 3, . . , is not eventually in any T, and so this 
sequence cannot converge. 

PROOF OF THEOREM 4.1. Suppose S., to be a topological group. Let xo be a point 
in S. and let X1, X2, X3, ... be a sequence converging to xo such that all the points 
xO, xI, x2, ... are distinct and none is the group identity. Denote the multiplica- 
tion on S. by m(, ). 

We shall select some points in S.,) to fill the roles of the points in the statement of 
Lemma 4.2. Let yo be m(xo, xo). Let yi be m(xo, xi) for i = 1, 2, 3 .... Then yo and 
the y, are distinct and lim yi = yo. We next choose the y 1j' j = 1, 2, 3, ... as 
follows: the sequence m(xj, xI), j = 1, 2, 3, . . . , converges to m(x0, xI). It is 
eventually disjoint from the sequence m(xo, xi) because the two sequences have 
different limits. Hence there is a positive integer k, such that for j > k, + 1, the 
points m(xj, xl) are distinct from all points chosen thus far. Pick as yl, the point 

m(xk+j, xl). Having picked sequences yii, j = 1, 2, 3, . . ., for i < n, proceed by 
induction: Note that m(xj, x"), j = 1, 2, 3, . . ., converges to m(xo, x") and is 
eventually disjoint (for j > k") from the set consisting of yo, the ye's, and all the 
previously chosen y,'s; pick kn sufficiently large and let = m(xk,+J, x"). 

The yo, yi's, and yij's we have selected from S.,) meet the conditions of Lemma 
4.2. Now let f: N -+ N be any function with f(i) > i for all i. lim x, = xo (all limits 
are taken as i - oo); also lim xf(i)+k. = xo since if i > M, f(i) + ki > M. Hence in 

S', x S, lim(xf(i)+k, xi) = (xo, xo). Now by continuity of multiplication in S.,, 

limYi,Ai) = lim m(xAi)+k,, xi) = m(x0, x0) = Yo 

contradicting Lemma 4.2 and completing the proof of Theorem 4.1. 
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