Accepted 2000 JCCC
Accepted 2000
JCCC

# Blocking Sets for Paths of a Given Length

Paul Erdős Hungarian Academy of Sciences

Ralph Faudree, Edward T. Ordman, Cecil Rousseau, and Richard Schelp

Department of Mathematical Sciences
The University of Memphis
Memphis, Tennessee 38152-6429

#### **Abstract**

How many vertices must we delete from a graph in order no longer contains a path  $P_k$  on k vertices? We explore this question for various special graphs (hypercubes, square lattice graphs) as well as for general families.

#### 1 Introduction

و دا پ

For basic definitions and notation, we refer the reader to standard texts on graph theory [3], [4], [7]. Given a graph G, let us say that  $Z \subset V(G)$  is k-blocking if  $G \setminus Z$  contains no path of order k. Given a graph G and an integer  $k \geq 2$ , we seek min |Z|, where the minimum is taken over all k-blocking subsets  $Z \subset V(G)$ . The ratio of min |Z| to |V(G)| will be called the k-blocking ratio of G.

The problem is suggested by various computer science applications. For the first, suppose that each vertex represents a state of a program (or finite state machine) and each edge a possible transition between states. It is desired to select a set of distinguished states (the set Z) so that the program will enter a distinguished state after at most k steps. (We assume, for this abstraction, that the program does not return to the same state during the k steps.)

For the second application, suppose that each vertex represents a computer and each edge a communication channel. We wish to record all "long distance" messages, specifically, all messages travelling at least k steps. If we could identify a subset Z of

the computers representing all paths of order k, we could place recorders at only those processes.

Alon and Chung considered a problem of this type in connection with fault tolerant networks [1]. They obtained the following striking result.

**Theorem (Alon, Chung).** For every  $\epsilon > 0$  and every integer  $k \geq 2$  there exists a graph G with  $(k/\epsilon)$  vertices, maximum degree  $\Delta = O(1/\epsilon^2)$ , and k-blocking ratio at least  $1 - \epsilon$ .

The proof of Alon and Chung uses the Ramanujan graphs studied by Lubotzky, Phillips, and Sarnak [8]. We shall study more commonplace examples (hypercubes, grid graphs) as well as general families of graphs.

Among the networks that have been used extensively in parallel computing are the hypercubes. Let  $Q_n$  denote the *n*-dimensional hypercube. This is the graph with vertex set  $V(Q_n) = \{0,1\}^n$  in which  $uv \in E(Q_n)$  if and only if the binary *n*-tuples u and v differ in exactly one component. Recursively,  $Q_n = K_2 \times Q_{n-1}$ , that is  $Q_n$  is obtained by taking two disjoint copies of  $Q_{n-1}$  and adding the n-1 edges that join corresponding vertices. [In general,  $G_1 \times G_2$  is the graph with vertex set  $V(G_1) \times V(G_2)$  in which  $uv \in E(G_1 \times G_2)$  if  $u_1v_1 \in E(G_1)$  and  $u_2 = v_2$  or  $u_1 = v_1$  and  $u_2v_2 \in E(G_2)$ .]

**Proposition 1.** For a hypercube  $Q_n$  of dimension  $n \geq 2$ , the 2-blocking ratio is 1/2, and so is the 3-blocking ratio.

Proof. First, let us show that the 2-blocking ratio is no more than 1/2. Let  $w(v) = \sum_{i=1}^{n} v_i$  be the Hamming weight of vertex v. Note that  $Q_n$  is bipartite with bipartition  $V(Q_n) = (W, Z)$  where  $W = \{v | w(v) \text{ is even}\}$  and  $Z = \{v | w(v) \text{ is odd}\}$ . Then  $|W| = |Z| = 2^{n-1}$  and Z (or W) is 2-blocking (and hence 3-blocking). In the other direction, first note that the recursive definition shows inductively that  $Q_n$  has a 2-factor consisting of  $2^{n-2}$   $C_4$ 's. Any 3-blocking set must contain at least two vertices from each of these  $C_4$ 's, and thus any 3-blocking set must contain at least  $2^{n-1}$  vertices.

## 2 Graphs of Large Degree

The following result uses the following well-known theorem of Erdős and Gallai [6]: a graph of order n that contains no  $P_k$  has at most n(k-2)/2 edges.

**Theorem 1.** Suppose that for i=1,2,3,... the graph  $G_i$  has order  $n_i$  and is regular of degree  $d_i$ , where  $d_i \to \infty$  as  $i \to \infty$ . Given  $k \geq 2$  and  $\epsilon > 0$ , there is an integer  $N = N(\epsilon, k)$  such that for all  $n_i > N$  the k-blocking ratio of  $G_i$  exceeds  $\frac{1}{2} - \epsilon$ .

*Proof.* If G is a d-regular graph of order n, then G has nd/2 edges. Deleting any  $(\frac{1}{2} - \epsilon)n$  vertices from G yields a graph with  $(\frac{1}{2} + \epsilon)n$  vertices and at least  $\frac{nd}{2} - (\frac{1}{2} - \epsilon)nd = nd\epsilon$  edges. If we assume that this graph contains no  $P_k$ , then the Erdős-Gallai theorem gives

$$d\epsilon < \left(\frac{1}{2} + \epsilon\right) \frac{k-2}{2},$$

which is clearly false provided d is sufficiently large. Since  $d_i \to \infty$  for the given sequence  $(G_i)$ , it follows that for all sufficiently large i the k-blocking ratio of  $G_i$  exceeds  $\frac{1}{2} - \epsilon$ .  $\square$ 

Corollary 1. For any fixed  $k \geq 2$  and any  $\epsilon > 0$  the k-blocking ratio of  $Q_n$  is at least  $(\frac{1}{2} - \epsilon)$  for all sufficiently large n.

*Proof.* The hypercube  $Q_n$  is a regular graph of order  $2^n$  and degree n. Hence the theorem applies.

### 3 Graphs of Bounded Degree.

With W and Z disjoint subsets of V(G), we shall denote by E(W, Z) denote the edge set  $\{wz \in E(G) | w \in W, z \in Z\}$ .

**Theorem 2.** Suppose G is a graph of order n and maximum degree  $\Delta$ . (a) Some set of  $\lfloor n\Delta/(\Delta+1) \rfloor$  vertices in G is 2-blocking. (b) Some set of  $\lfloor n\Delta/(\Delta+2) \rfloor$  vertices in G is 3-blocking. Both results are sharp. Thus, for the family of all graphs with maximum degree  $\Delta$ , the largest possible 2-blocking ratio is  $\Delta/(\Delta+1)$  and the largest 3-blocking ratio is  $\Delta/(\Delta+2)$ .

*Proof.* (a) Equivalently,  $\alpha(G) \geq \lceil n/(\Delta+1) \rceil$ . This follows immediately from Ramsey result of Chvátal [5]  $r(T,K_m) = (m-1)q+1$  for any tree T with q edges (in particular,  $T=K_{1,q}$ ). For another simple proof, note that if  $W \subset V(G)$  is an independent set of order  $\alpha(G)$  and  $Z=V(G)\backslash W$ , then Z is 2-blocking. Since W is a maximal independent set, each vertex in Z is adjacent to at least one vertex in W. Hence

$$|Z| \le |E(W, Z)| \le (n - |Z|) \Delta,$$

which gives  $|Z| \leq \lfloor n\Delta/(\Delta+1) \rfloor$ . To see that this bound is sharp, consider the example  $G \cong mK_{\Delta+1}$  where  $m = n/(\Delta+1)$ . In order to obtain an independent set, at least  $\Delta$  vertices must be deleted from each component. Hence, any 2-blocking set contains at least  $n\Delta/(\Delta+1)$  vertices.

(b) Let  $W \subset V(G)$  be such that  $P_3 \not\subset \langle W \rangle$ , and, subject to this condition, |W| is as large as possible. Further, assume that of all such sets with the maximum possible cardinality, W has been chosen so as to minimize the number of edges of  $\langle W \rangle$ . We claim that each vertex in  $Z = V(G) \setminus W$  is adjacent to at least two vertices of W. Clearly, each  $z \in Z$  is adjacent to at least one vertex in W. If  $\Gamma(z) \cap W = \{w\}$  where w is isolated in  $\langle W \rangle$ , then  $W' = W \cup \{z\}$  satisfies |W'| > |W| and  $P_3 \not\subset \langle W' \rangle$ , a contradiction. Similarly, if  $\Gamma(z) \cap W = \{w_1\}$  where  $w_1w_2$  is an isolated edge in  $\langle W \rangle$ , then  $W' = (W \setminus \{w_1\}) \cup \{z|$  satisfies |W'| = |W| and  $P_3 \not\subset \langle W' \rangle$ . However,  $\langle W' \rangle$  has fewer edges than  $\langle W \rangle$ , a contradiction. Hence

$$2|Z| \le |E(W,Z)| \le (n-|Z|) \,\Delta,$$

which gives  $|Z| \leq n\Delta/(\Delta+2)$ . To see that this bound is sharp, suppose  $\Delta$  is even, and consider  $G \cong mCP(\Delta/2+1)m$  where  $m=n/(\Delta+2)$  and  $CP(r)=\overline{rK_2}$  denotes the *cocktail-party* graph [2, p. 17]. If fewer than  $m\Delta$  vertices are deleted from G, then some component retains at least three vertices, and the subgraph spanned by these three contains  $P_3$ . Hence any 3-blocking set contains at least  $m\Delta = n\Delta/(\Delta+2)$  vertices.  $\square$ 

Next we prove that the examples used to show sharpness in the last theorem are unique. The following notation will be used: for  $z \notin W$ , write  $\Gamma_W(z) = \Gamma(z) \cap W$ .

**Theorem 3.** (a) If G has order n, maximum degree  $\Delta$ , and no set with fewer than  $n\Delta/(\Delta+1)$  vertices is 2-blocking, then  $G \cong mK_{\Delta+1}$ . (b) If G has order n, maximum degree  $\Delta$ , and no set with fewer than  $n\Delta/(\Delta+2)$  vertices is 3-blocking, then  $\Delta$  is even and  $G \cong mCP(\Delta/2+1)$  where  $m=n/(\Delta+2)$ .

Proof. (a) Review of the above proof shows that Z is a 2-blocking set with  $|Z| < (n - |Z|)\Delta$ , so  $|Z| < n\Delta/(\Delta + 1)$  unless each vertex in W has degree  $\Delta$  and  $|\Gamma_W(z)| = 1$  for each  $z \in Z$ . Since  $|W| = \alpha(G)$ , it follows that if  $z_1, z_2 \in Z$  have a common neighbor in  $w \in W$  then  $z_1 z_2 \in E(G)$ ; otherwise,  $W \setminus \{w\} \cup \{z_1, z_2\}$  is an independent set with more than |W| vertices. Hence each component of G is isomorphic to  $K_{\Delta+1}$ , and it follows that  $G \cong mK_{\Delta+1}$  where  $m = n/(\Delta+1)$ .

(b) Review of the above proof shows that Z is a 3-blocking set with  $2|Z| < (n-|Z|)\Delta$ , so  $|Z| < n\Delta/(\Delta+2)$  unless  $W = V(G) \setminus Z$  is an independent set, each vertex  $w \in W$  has degree  $\Delta$ , and each vertex  $z \in Z$  satisfies  $|\Gamma_W(z)| = 2$ . Let  $w \in W$  be arbitrary, and consider  $\langle \Gamma(w) \rangle$ . We claim that  $\Delta$  is even and  $\langle \Gamma(w) \rangle \cong CP(\Delta/2)$ . To prove this claim, we first note that if  $z \in \Gamma(w)$  has degree  $\Delta-1$  in  $\langle \Gamma(z) \rangle$  then it has degree  $(\Delta-1)+2>\Delta$  in G, a contradiction. Suppose  $z \in \Gamma(w)$  has degree  $\Delta-3$  or less in  $\langle \Gamma(w) \rangle$ . Specifically,

suppose that there are distinct vertices  $z', z'' \in \Gamma(w)$  such that  $zz' \notin E(G)$ , and  $zz'' \notin E(G)$ . We may assume that  $\Gamma_W(z) = \{w, w'\}$  where  $w' \neq w$ . If  $\Gamma_W(z') = \{w, w''\}$  where  $w'' \neq w'$ , then  $W' = (W \setminus \{w\}) \cup \{z, z'\}$  satisfies |W'| > |W| and  $P_3 \not\subset \langle W' \rangle$ , a contradiction. Hence, we conclude that  $\Gamma_W(z) = \Gamma_W(z') = \Gamma_W(z'') = \{w, w'\}$ . But then  $W'' = (W \setminus \{w, w'\}) \cup \{z, z', z''\}$  satisfies |W''| > |W'| and  $P_3 \not\subset \langle W'' \rangle$ , a contradiction. It follows that  $\langle \Gamma(w) \rangle \cong CP(\Delta/2)$  as claimed. Since each  $z \in Z$  satisfies  $|\Gamma_W(z)| = 2$  belongs to a subgraph of  $\langle Z \rangle$  isomorphic to the cocktail-party graph  $CP(\Delta/2)$ , it follows that G is regular of degree  $\Delta$ . Again suppose  $zz' \notin E(G)$ , so  $\Gamma_W(z) = \Gamma_W(z') = \{w, w'\}$ . Then  $(W \setminus \{w, w'\}) \cup \{z, z'\}$  is an independent set. Thus z can play the role initially played by w. It follows that  $\Gamma(w') = \Gamma(w)$  and the subgraph spanned by  $\Gamma(w) \cup \{w, w'\}$  is isomorphic to  $CP(\Delta/2+1)$ . Clearly, such a subgraph is a component of G, for else some vertex has degree exceeding  $\Delta$ , and repetition yields the fact that  $G \cong mCP(\Delta/2+1)$  where  $m = n/(\Delta+2)$ .

### 4 Grid Graphs

Let  $GP(n) = P_n \times P_n$  and  $GC(n) = C_n \times C_n$ . We shall refer to GP(n) as the square grid graph. Specifically, we shall take GP(n) to be the graph with vertex set  $V = \{(x,y) | 0 \le x, y < n\}$  in which two vertices are adjacent if their indices agree in one coordinate and differ by exactly one in the other. The graph GC(n) can be thought of as the  $n \times n$  grid embedded on a torus.

**Proposition 2.** If n is even, then GP(n) has 2-blocking ratio 1/2. The 3-blocking ratio is 1/2 as well.

*Proof.* The proof is practically the same as that for hypercubes. Let  $Z = \{(x,y) | x+y \equiv 1 \pmod{2} \}$ . Then  $|Z| = n^2/2$  and every edge of GP(n) is incident with a vertex in Z, so Z is 2-blocking. In the other direction, note that GP(n) has a 2-factor consisting of  $n^2/4$   $C_4$ 's. Any 3-blocking set Z must contain at least two vertices from each of these  $C_4$ 's, so the 3-blocking ratio is at least 1/2.

**Proposition 3.** (a) The 4-blocking ratio of G = GP(n) is at most 3/8. (b) The 4-blocking ratio of GC(n) is at least 3/8. (c) The 4-blocking ratio of GP(n) converges to 3/8 as  $n \to \infty$ .

*Proof.* (a) Note that for  $G \cong GP(n)$  the set

$$Z = \{(x, y) | 0 \le x, y < n, \ x \pm y \equiv 0 \pmod{4} \}$$

is 4-blocking, since each connected component of  $G \setminus Z$  is isomorphic to  $K_{1,4}$  or some subgraph thereof. Figure 1 shows Z (the darkened vertices) for the case of n = 8. In this case  $|Z| = (3/8) \cdot 64 = 24$ .



FIGURE 1. 4-Blocking Set for GP(8)

(b) Note that GC(n) has  $n^2$  vertices and is regular of degree 4 so it has  $2n^2$  edges. Suppose Z is a 4-blocking set. Then  $G \setminus Z$  has  $n^2 - |Z|$  vertices, at least  $2n^2 - 4|Z|$  and contains no  $P_4$ . Since  $G \setminus Z$  contains no  $P_4$ , each nontrivial component is isomorphic to  $P_2, P_3, K_{1,3}$  or  $K_{1,4}$ .



FIGURE 2. Components of  $G \setminus Z$ 

These graphs have average degree 1, 4/3, 3/2, 8/5, respectively, and it follows that  $G \setminus Z$  has average degree at most 8/5. Hence

$$\frac{2(2n^2-4|Z|)}{n^2-|Z|}\leq \frac{8}{5},$$

which gives  $|Z|/n^2 \ge 3/8$ . (c) Clearly, as  $n \to \infty$  the "edge effects" become negligible,

#### FIGURE 4.

To prove that the 6-blocking ratio of  $G \cong GC(n)$  is at least 1/3, it suffices to check that if Z is any 6-blocking set then each component of  $G \setminus Z$  has average degree at most 2. Then  $2(2n^2 - |Z|)/(n^2 - |Z|) \le 2$ , so  $|Z|/n^2 \ge 1/3$ .

**Lemma 1.** If p < r, and p vertices are deleted from GP(r), then the resulting graph contains a path of order  $(r-p)^2 + p$ .

*Proof.* The vertices of GP(r) fall into r rows and n columns. The deletion of any p < r vertices leaves r - p rows and r - p columns intact. Then there is an obvious zig-zag path that uses the r - p intact rows, and uses the leftmost and rightmost intact columns to go between these rows, as illustrated below. This gives a path with at least  $(r - p)^2 + p$  vertices.



FIGURE 5. Illustration of the Lemma

**Theorem 4.** For  $k \geq 3$  and for all sufficiently large values of n, the k-blocking ratio of GP(n) is between  $1/(4\sqrt{k})$  and  $\sqrt{2/k}$ .

*Proof.* First we prove that the k-blocking ratio is less than  $\sqrt{2/k}$ . For this purpose, we use the blocking set

$$Z = \{(x,y) | 0 \le x, y < n, \ x \pm y \equiv 0 \pmod{m}\}, \qquad m = \lceil \sqrt{2k} \rceil.$$

For simplicity, assume first that m divides n. Then

$$rac{|Z|}{n^2} = egin{cases} rac{2m-2}{m^2}, & m ext{ even}, \ & & \ rac{2m-1}{m^2}, & m ext{ odd}, \end{cases}$$

and the largest component of  $GP(n) \setminus Z$  has  $m^2/2 - m + 1$  vertices if m is even and  $(m-1)^2/2$  vertices if m is odd. Examples of the largest component for two different values of m are shown in Fig. 6.



FIGURE 6. Components of  $GP(n) \setminus Z$ 

With this choice,  $|Z|/n^2 < 2/m < \sqrt{2/k}$  and  $P_k \not\subset GP(n) \setminus Z$  since no component of  $GP(n) \setminus Z$  has more than k vertices, and the largest component does not have a hamiltonian path. The same conclusion holds in case n is not divisible by m, since  $|Z|/n^2 < 2/m$  still holds.

To prove the lower bound, we shall use Lemma 1. Set  $d = \lceil \sqrt{k} \rceil = \sqrt{k} + \epsilon$  where  $0 \le \epsilon < 1$ . For simplicity, first assume that 2d divides n. Then there are  $(n/2d)^2$  copies of GP(2d) in G = GP(n). If  $|Z| \le n^2/(4\sqrt{k})$ , then a simple averaging argument shows

that in GP(n) there is a copy of GP(2d) having at most  $(2d)^2/(4\sqrt{k}) = d^2/\sqrt{k}$  vertices in common with Z. By Lemma 1, in  $GP(n) \setminus Z$  such a copy contains a path with at least

$$\left(2d - \frac{d^2}{\sqrt{k}}\right)^2 + \frac{d^2}{\sqrt{k}} = d^2 \left(2 - \frac{d}{\sqrt{k}}\right)^2 + \frac{d^2}{\sqrt{k}}$$
$$= \frac{(k - \epsilon^2)^2}{k} + \sqrt{k} + 2\epsilon + \frac{\epsilon^2}{\sqrt{k}}$$
$$\ge k + \sqrt{k}$$

vertices. Now it is easy to see that the condition (2d)|n can be removed provided n is sufficiently large. By continuity, we can choose  $\delta > 0$  so that with  $d^2/\sqrt{k}$  replaced by  $d^2/\sqrt{k} + \delta$  in the above calculation, the final values is at least k. Then for all sufficiently large n, there exists a copy of GP(2d) having at most  $d^2/\sqrt{k} + \delta$  vertices in common with Z, and this gives the desired result.

### References

- [1] N. Alon and F. R. K. Chung, Explicit constructions of linear sized tolerant networks, Discrete Math. 72 (1988), 15–19.
- [2] N. Biggs, Algebraic Graph Theory, 2nd ed., Cambridge University Press, Cambridge, 1993.
- [3] B. Bollobás, Modern Graph Theory, Springer-Verlag, New York, 1998.
- [4] G. Chartrand and L. Lesniak, Graph and Digraphs, 3rd ed., Chapman and Hall, London, 1996.
- [5] V. Chvátal, Tree-compete graph Ramsey numbers, J. Graph Theory 1 (1977), 93.
- [6] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hung. 10 (1959), 337–356.
- [7] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.
- [8] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), 261–278.