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Abstract

How many vertices must we delete from a graph in order no longer contains a
path Py on k vertices? We explore this question for various special graphs (hyper-
cubes, square lattice graphs) as well as for general families.

1 Introduction

For basic definitions and notation, we refer the reader to standard texts on graph theory
3], [4], [7]. Given a graph G, let us say that Z C V(G) is k-blocking if G \ Z contains
no path of order k. Given a graph G and an integer k > 2, we seek min |Z|, where the
minimum is taken over all k-blocking subsets Z C V(G). The ratio of min |Z| to [V(G)|
will be called the k-blocking ratio of G.

The problem is suggested by various computer science applications. For the first,
suppose that each vertex represents a state of a program (or finite state machine) and
each edge a possible transition between states. It is desired to select a set of distinguished
states (the set Z) so that the program will enter a distinguished state after at most k
steps. (We assume, for this abstraction, that the program does not return to the same
state during the k steps.)

For the second application, suppose that each vertex represents a computer and
each edge a communication channel. We wish to record all “long distance” messages,
specifically, all messages travelling at least k steps. If we could identify a subset Z of
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the computers representing all paths of order k, we could place recorders at only those
processes.

Alon and Chung considered a problem of this type in connection with fault tolerant
networks [1]. They obtained the following striking result.

Theorem (Alon, Chung). For every e > 0 and every integer k > 2 there ezists a graph
G with (k/€) vertices, mazimum degree A = O(1/€®), and k-blocking ratio at least 1 — .

The proof of Alon and Chung uses the Ramanujan graphs studied by Lubotzky,
Phillips, and Sarnak [8]. We shall study more commonplace examples (hypercubes, grid
graphs) as well as general families of graphs.

Among the networks that have been used extensively in parallel computing are the
hypercubes. Let @, denote the n-dimensional hypercube. This is the graph with vertex
set V(Qn) = {0,1}" in which uv € E(Q,) if and only if the binary n-tuples u and v
differ in exactly one component. Recursively, Q, = K3 X Qn-1, that is @, is obtained by
taking two disjoint copies of @, and adding the n — 1 edges that join corresponding
vertices. [In general, G; x G is the graph with vertex set V(G1) x V(G,) in which
wv € E(G; x Gy) if uyv; € E(G,) and ugy = v or u; = v; and ugvp € E(G»).]

Proposition 1. For a hypercube Q, of dimensionn > 2, the 2-blocking ratio is 1 /2, and

80 is the 3-blocking ratio.

Proof. First, let us show that the 2-blocking ratio is no more than 1/2. Let w(v) =
3, v; be the Hamming weight of vertex v. Note that Q. is bipartite with bipartition
V(Q.) = (W, Z) where W = {v| w(v) iseven} and Z = {v| w(v) is odd}. Then
[W| = |Z| = 2" and Z (or W) is 2-blocking (and hence 3-blocking). In the other
direction, first note that the recursive definition shows inductively that @, has a 2-factor
consisting of 2"~2 Cy’s. Any 3-blocking set must contain at least two vertices from each
of these Cy’s, and thus any 3-blocking set must contain at least 2"~! vertices. a

2 Graphs of Large Degree

The following result uses the following well-known theorem of Erdés and Gallai [6]: a
graph of order n that contains no Py has at most n(k — 2)/2 edges.

Theorem 1. Suppose that for i = 1,2,3,... the graph G; has order n; and is regular
of degree d;, where d; — 0o as i — co. Given k > 2 and € > 0, there is an integer
N = N(e, k) such that for all n; > N the k-blocking ratio of G; exceeds % — €.
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Proof. If G is a d-regular graph of order n, then G has nd/2 edges. Deleting any (3—¢€n
vertices from G yields a graph with (} + €)n vertices and at least % — (3 — €)nd = nde

edges. If we assume that this graph contains no Py, then the Erd6s-Gallai theorem gives

de < (l+e) k—2’
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which is clearly false provided d is sufficiently large. Since d; — oo for the given sequence
(G;), it follows that for all sufficiently large 7 the k-blocking ratio of G; exceeds % —-e. O

Corollary 1. For any fized k > 2 and any € > 0 the k-blocking ratio of Qn is at least

1 —€) for all sufficiently large n.

Proof. The hypercube Q,, is a regular graph of order 2" and degree n. Hence the theorem
applies. O

3 Graphs of Bounded Degree.

With W and Z disjoint subsets of V(G), we shall denote by E(W, Z) denote the edge set
{wz € E(G)|we W,z € Z}.

Theorem 2. Suppose G is a graph of order n and mazimum degree A. (a) Some set of
|nA/(A + 1)) vertices in G is 2-blocking. (b) Some set of [nA/(A + 2)| vertices in G
is 3-blocking. Both results are sharp. Thus, for the family of all graphs with mazimum
degree A, the largest possible 2-blocking ratio is A/(A+1) and the largest 3-blocking ratio
is AJ(A+2).

Proof. (a) Equivalently, &(G) > [n/(A + 1)]. This follows immediately from Ramsey
result of Chvatal [5] 7(T, Kn) = (m — 1)g+ 1 for any tree T with g edges (in particular,
T = K,). For another simple proof, note that if W C V(QG) is an independent set of
order a(G) and Z = V(G)\W, then Z is 2-blocking. Since W is a a maximal independent
set, each vertex in Z is adjacent to at least one vertex in W. Hence

1Z] < |[E(W, 2)| < (n—2]) A,

which gives |Z| < [nA/(A +1)]. To see that this bound is sharp, consider the example
G = mKa.1 where m = n/(A +1). In order to obtain an independent set, at least A
vertices must be deleted from each component. Hence, any 2-blocking set contains at

least nA/(A + 1) vertices.



(b) Let W C V(G) be such that P; ¢ (W), and, subject to this condition, |W] is
as large as possible. Further, assume that of all such sets with the maximum possible
cardinality, W has been chosen so as to minimize the number of edges of (W). We claim
that each vertex in Z = V(G) \ W is adjacent to at least two vertices of W. Clearly, each
z € Z is adjacent to at least one vertex in W. If ['(2) N W = {w} where w is isolated in
(W), then W’ = W U{z} satisfies |W’| > |[W| and P; ¢ (W'), a contradiction. Similarly,
if ['(2) "W = {w1} where w;w, is an isolated edge in (W), then W' = (W' \ {w1}) U{z||
satisfies |W’| = |W| and P; ¢ (W'). However, (W’) has fewer edges than (W), a

contradiction. Hence
2|Z| < |EW,Z)| < (n—|Z]) A,

which gives |Z| < nA/(A + 2). To see that this bound is sharp, suppose A is even,
and consider G 2 mCP(A/2 + 1)m where m = n/(A + 2) and CP(r) = rK; denotes
the cocktail-party graph [2, p. 17). If fewer than mA vertices are deleted from G, then
some component retains at least three vertices, and the subgraph spanned by these three
contains P;. Hence any 3-blocking set contains at least mA = nA/(A + 2) vertices. [

Next we prove that the examples used to show sharpness in the last theorem are
unique. The following notation will be used: for z ¢ W, write I'w (2) = T'(2) N W.

Theorem 3. (a) If G has order n, mazimum degree A, and no set with fewer than
nA/(A + 1) vertices is 2-blocking, then G = mKa41. (b) If G has order n, mazimum
degree A, and no set with fewer than nA/(A + 2) vertices is 3-blocking, then A is even
and G =2 mCP(A/2 + 1) where m =n/(A +2).

Proof. (a) Review of the above proof shows that Z is a 2-blocking set with |Z] < (n -
1Z|)A, so |Z| < nA/(A + 1) unless each vertex in W has degree A and [T'w(z)| =1 for
each z € Z. Since |W| = a(G), it follows that if 2, 22 € Z have a common neighbor in
w € W then 2,2, € E(G); otherwise, W \ {w})U{z1, 2} is an independent set with more
than |W| vertices. Hence each component of G is isomorphic to Ka41, and it follows
that G = mKa4, where m =n/(A +1).

(b) Review of the above proof shows that Z is a 3-blocking set with 2|Z| < (n—[Z|)A,
s0 |Z| < nA/(A +2) unless W = V(G) \ Z is an independent set, each vertex w € W
has degree A, and each vertex z € Z satisfies |['w(z)| = 2. Let w € W be arbitrary, and
consider (I'(w)). We claim that A is even and (['(w)) & CP(A/2). To prove this claim,
we first note that if z € I'(w) has degree A—1 in (I'(2)) then it has degree (A—-1)+2 > A
in G, a contradiction. Suppose z € I'(w) has degree A — 3 or less in (I'(w)). Specifically,
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suppose that there are distinct vertices 2’,2" € T'(w) such that z7' ¢ E(G), and 22" ¢
E(G). We may assume that I'w(z) = {w,w'} where w' # w. If I'w(z) = {w,vw"}
where w" # w', then W' = (W \ {w}) U {z, 2} satisfies |W'| > |W| and P5 ¢ (W"), a
contradiction. Hence, we conclude that I'y(2z) = T'w(2') = Tw(2") = {w,w'}. But then
W = (W \ {w,w'}) U {z,7,2"} satisfies |W"| > |W'| and P5 £ (W"), a contradiction.
It follows that (I'(w)) & CP(A/2) as claimed. Since each z € Z satisfies Tw(z)| =2
belongs to a subgraph of (Z) isomorphic to the cocktail-party graph CP(A/2), it follows
that G is regular of degree A. Again suppose zz' ¢ E(G), so T'w(z) = T'w(2') = {w,vw'}.
Then (W \ {w,w'}) U {z,2'} is an independent set. Thus z can play the role initially
played by w. It follows that I'(w') = I'(w) and the subgraph spanned by ['(w)U{w,w'} is
isomorphic to CP(A/2+1). Clearly, such a subgraph is a component of G, for else some
vertex has degree exceeding A, and repetition yields the fact that G = mCP(A/2 +1)
where m =n/(A+2).

a

4 Grid Graphs

Let GP(n) = P, x P, and GC(n) = C, x C,. We shall refer to GP(n) as the square grid
graph. Specifically, we shall take GP(n) to be the graph with vertex set V' = {(z,y)| 0 <
£,y < n} in which two vertices are adjacent if their indices agree in one coordinate and
differ by exactly one in the other. The graph GC (n) can be thought of as the n X n grid

embedded on a torus.

Proposition 2. If n is even, then GP(n) has 2-blocking ratio 1/2. The 3-blocking ratio
is 1/2 as well.

Proof. The proof is practically the same as that for hypercubes. Let Z={(z,y)|z+y =1
(mod 2)}. Then |Z| = n%/2 and every edge of GP(n) is incident with a vertex in Z, so
7 is 2-blocking. In the other direction, note that GP(n) has a 2-factor consisting of n?/4
C,’s. Any 3-blocking set Z must contain at least two vertices from each of these Cy’s, so
the 3-blocking ratio is at least 1/2. O
Proposition 3. (a) The 4-blocking ratio of G = GP(n) is at most 3/8. (b) The 4-
blocking ratio of GC(n) is at least 3/8. (c) The 4-blocking ratio of GP(n) converges to
3/8 as n — 0.

Proof. (a) Note that for G = GP(n) the set
Z ={(z,y)|0<z,y<n, sxy=0 (mod4)}
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is 4-blocking, since each connected component of G \ Z is isomorphic to Kj4 or some
subgraph thereof. Figure 1 shows Z (the darkened vertices) for the case of n = 8. In this

case |Z| = (3/8) - 64 = 24.

*—O0—9—0 —0—9

\

FIGURE 1. 4-Blocking Set for GP(8)

(b) Note that GC(n) has n? vertices and is regular of degree 4 so it has 2n® edges.
Suppose Z is a 4-blocking set. Then G \ Z has n? — |Z| vertices, at least 2n? — 4|Z| and
contains no Py. Since G \ Z contains no Pj, each nontrivial component is isomorphic to

P, P, K1,3 or K1,4-

T T

FIGURE 2. Components of G \ Z
These graphs have average degree 1, 4/3, 3/2, 8/5, respectively, and it follows that G\ Z

has average degree at most 8/5. Hence

202’ —4|7)) _8
2—|Z] -5

which gives |Z|/n® > 3/8. (c) Clearly, as n — oo the “edge effects” become negligible,
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FIGURE 4.

To prove that the 6-blocking ratio of G 2 GC(n) is at least 1/3, it suffices to check that
if Z is any 6-blocking set then each component of G \ Z has average degree at most 2.
Then 2(2n% — |Z])/(n? — |Z|) < 2, s0 |Z|/n® > 1/3.

Lemma 1. If p < r, and p vertices are deleted from GP(r), then the resulting graph
contains a path of order (r — p)? + p.

Proof. The vertices of GP(r) fall into r rows and n columns. The deletion of any p < r
vertices leaves r — p rows and r —p columns intact. Then there is an obvious zig-zag path
that uses the r — p intact rows, and uses the leftmost and rightmost intact columns to
go between these rows, as illustrated below. This gives a path with at least (r—p)2+p

vertices. O

FIGURE 5. Illustration of the Lemma



Theorem 4. For k > 3 and for all sufficiently large values of n, the k-blocking ratio of

GP(n) is between 1/(4vVE) and \/2/k.

Proof. First we prove that the k-blocking ratio is less than 1/2/k. For this purpose, we
use the blocking set

Z={(z,9)|0<z,y<n, t+y=0 (modm)}, m = [V2k].

For simplicity, assume first that m divides n. Then

2m — 2
12| T m even,
F= 2m —1

— m odd,

and the largest component of GP(n) \ Z has m?/2 — m + 1 vertices if m is even and
(m — 1)2/2 vertices if m is odd. Examples of the largest component for two different

values of m are shown in Fig. 6.

]
L

O

FIGURE 6. Components of GP(n) \ Z

With this choice, |Z|/n? < 2/m < /2/k and P, ¢ GP(n)\ Z since no component
of GP(n) \ Z has more than k vertices, and the largest component does not have a
hamiltonian path. The same conclusion holds in case n is not divisible by m, since
|Z|/n? < 2/m still holds.

To prove the lower bound, we shall use Lemma 1. Set d = [VE] = vk + € where
0 < € < 1. For simplicity, first assume that 2d divides n. Then there are (n/2d)? copies
of GP(2d) in G = GP(n). If |Z| < n?/ (4Vk), then a simple averaging argument shows
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that in GP(n) there is a copy of GP(2d) having at most (2d)%/(4Vk) = d?/ vk vertices
in common with Z. By Lemma 1, in GP(n)\ Z such a copy contains a path with at least
&2 )2 & d\*,K &
2W—-—) +—==d° (2———) + —

( vk vk vk) vk
(k — €?)? 2

€
= +VEk+2+—
k Tk

>k+Vk

vertices. Now it is easy to see that the condition (2d)|n can be removed provided 7 is
sufficiently large. By continuity, we can choose § > 0 so that with d?/ vk replaced by
d?/vk + 8 in the above calculation, the final values is at least k. Then for all sufficiently
large n, there exists a copy of GP(2d) having at most d?/ vk + & vertices in common
with Z, and this gives the desired result. a
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