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1. INTRODUCTION

In 1934 Kurosh (9) proved that ‘a subgroup of a free product of groups is again a
free product’. Many other proofs of this, and attempts to generalize it to amalgamated
free products, have appeared (e.g. (7), (1), (10) and (8)). Recently the theory of groupoids
has been applied to this area with increasing success. In 1966 Higgins(6) used groupoids
to prove the generalization of Grushko’s Theorem (3) due to Wagner(14).

We here apply groupoids to prove the following theorem:

THEOREM A. Suppose:

(1) @ = IT¥(G,, pe M; Gy) is a free product of groups G, p in an index set M, with G
amalgamated ;

(2) K = II*(K,, pe M) is a free product of groups over the same index set ;

(3) f: G - K 1is a group homomorphism with f(G,) = K, for each p ; and

(4) H is a subgroup of G such that f(H) = K.

Then

(5) H is expressible as 11*(H,, pe M ; Hy) with f(H,) = K ,;

(6) H, is generated as a subgroup of G by certain subgroups gy, Gy, 96, , where Gy, < Gy,
{90} = Kerf < G

(7) Bach H, is generated as a subgroup of G by certain subgroups g, s Where
G, < G {9,0} < {90} < Kerf, together with certain elements g, g,gs, where g € G, g, and
93 €190} and

(8) Finally, if Gy = {1} then Hy = {1} and each H is the free product of the indicated
subgroups together with the free group on the indicated elements.

Notice that if K = G, = {1}, the Kurosh subgroup theorem follows. If G, = {1},
K = {1}, we have the following:

TueorEM OF HIGGINS (6). Let G = II*(G,,ue M) and K = T1*(K,,pe M) be free
products. Let f: G — K satisfy f(@,) < K, for all u, and let H be a subgroup of G with
f(H) = K. Then H = 11*(H ,, p€ M) with each f(H,) < K ,.

Higgins modifies an argument of Stallings (13) to deduce as a corollary of this

GrusHKO’S THEOREM. Let g: F — I1*(K ,, p€ M) be a map of a free group onto a free
product of groups. Then F is itself a free product ' = 11*(F,, pe M) with g(F,) < K.

+ This material was part of a Ph.D. dissertation submitted to Princeton University and
supervised by Prof. J. Stallings of the University of California (Berkeley).
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2-3-2. As in the case of groups, we may find a canonical member of each equivalence
class of words.

2-3-3. Let @ = [a,...a,], n > 2, be in reduced form. Then a = [b] for any be 4,, and
@ + [e] for any identity e.

It is critical to what follows that nowhere in section 2-3 is it required that 4, or
any A4, be connected.

Higgins’ free products of groupoids are now free products with various sets of
identities amalgamated. The usual free product of groups is in our notation

I1*(@,, pe M;{1})

but we shall omit the {1}. Note that IT1*(G,, u€ M ; G,) has only one identity 1, G, and
each G, are connected, and G, is simply connected only if it is trivial.

We shall often omit the brackets in [a,...a,]. This will not cause confusion, for when
we write a; = [a;], @...a, is a product in A = I1*(4,ueM;A,) whose value is
[@...a,]. Note that now 4, < 4, < 4 for all p€ M, and the identities of 4 are just
those of the various 4.

3. SOME LEMMAS

3:1. Simple constructions.

Lemma 3:1-1. Let B = [1*(B,, ue M; B,) and let p: A — B be a covering map. Denote
p~4(B,) by 4,, peM U {0}. Then A = T1*(4,,pe M ; Ay).

Proof. If p+v, A,n4,=p B, np™(B,) = p~(B,nB,) = p(B,) = 4. Thus
we may construct IT*(4,,u€M;A,). Since there are inclusions 4, < 4, there is a
map f: [1*(4,, pe M; Ag) - A. We show fis an isomorphism by producing an inverse.

If ac A, p(a)eB and may be written p(a) = b,b,...b, with each b; in some B .
f(e(a)) = e(b,), so there is a unique lifting of b, to a,€ 4,y starting at e(a). Since
fle(ai)) = e(byt) = e(by), b, lifts uniquely to a,€ 4 ), and so on. Then a,...a, is the
unique path starting at e(e) and mapping to f(a); that is, @,...a, = a. This gives a
map g: A - I1*(4,, peM; 4,y), namely g(a) = [a;...a,], which is well-defined since
an elementary equivalence on b,...b, induces one on a,...a,. Since g is an inverse for f,
3-1-1 is proven.

Our next result is motivated by a simple case of Van Kampen’s Theorem:

LeMma 3:-1-2. Let A = IT*(4,,pc M; A,) where Ay, each A, and A are connected.
Let ¢ be an identity in Ay. Then m(A4,e) = I1*(m(4,,e), pe M;m(4y, €)).

Proof. Denote I1*(m(4,,e),pe M;m(Aye)) by P. An element of P has a repre-
sentative @ = a,...a, which is also a productin(4, ¢). Since an elementary equivalence
in P induces one in 4, the resulting map p: P — m(4, ¢) is well defined. We show that
this map is one-to-one and onto.

Onto. Given a = a,...a, €m(4,e), we shall find a pre-image in P. Here a, is in some
A, and e(a,) = e(ay ) = e. For each a;, let r; be a path in 4, from e to e(a;); this exists
since 4, is connected. Now @ = (@;73) (ry@s73Y)...(ry—1@y—177") (7, ;) is an element of
P which maps to @ under p: P - m(4,e).
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One-to-one. Suppose @ = a,...a, and ¢ = ¢,...c,, are in P, so that each a; and ¢, lie
in some 7(4,,¢). Suppose p(a) = p(c) in 4; that is, @y...0,Cpt...c7t may be reduced
to an identity by elementary equivalences in 4. Now 2-3-3 tells us that at no step in
this process do we have a nontrivial reduced word. Hence at each step we may merely
eliminate an identity, or multiply two terms together. But these steps can be carried
out as easily in P as in 4, so @ = ¢ in P, concluding the proof.

3-2. A method of restructuring products. When a product structure is lifted to a
covering groupoid, as in 3-1-1, the amalgamated subgroupoid of the cover is rarely
connected, hindering application of 3-1-2. It is thus useful to be able to enlarge the
amalgamated subgroupoid until it is connected. The results here are closely related
to Stallings’ (13) ¢ Construction in the case of binding ties’.

Lemma 3-2-1. Suppose A = TI*(A,, peM; Ay, s€UA,\A,; let A, be the sub-
groupoid of A generated by A,V {s}, for pe M U {0}. Then A = II*(A4,, pe M; Ayg).

Proof. We first show that if 4 + v, 4), n 4, = 4. Clearly 4, < 4, < A, and se4,,
so Ay < A),. Similarly 4; < 4;, so A< A, nA,. Suppose that this fails to be an
equality: suppose g,€ 4, N A,\A4,. Write

Qo = C1...0j, ci€A, U{s,s7Le(s),e(s)} =4, ud,, scd,

Multiply terms together to write ¢, = [c;...c,] in reduced form in 4. Now no ¢; is an
identity (unless n = 1, an easy special case), and the c; lie alternately in A N4, and
in (A4, n 4g)\4,. Surely some c; ¢ A} (otherwise g,€ A contrary to hypothesis). Sup-
pose ¢, through ¢, lie in A4, ¢, ¢ 4g, so c,e 4 N\A,. Now let ¢ = [c;...¢,] ed, n A N4,
Again write ¢ in reduced form in 4 as ¢ = [d;...d,,] so that the d, lie alternately in
ANA,andin (4, n Ag)\4,.

Now e(q) = ¢¢~* = [¢y...c,dz)...d7 1], and by 2-3-3, d,, must lie in 4, along with c,.
Also ¢,d;;t must lie in A, (for we can reduce no further unless this term lies in the same
factor as the terms around it, 4,,;and 4, n 4, = 4,). (If p = o', interchange v and u;
at least one of them is not x'.) (If » = 1 or m = 1 ¢,d,! may be an identity. Then
¢y =dne(@A AN (4, 04,0 A,4p) < Aj, contradicting c, ¢ A;.) But since

o dited, and d,ed,, dcA,n[(A 40U (4, n45]< 4

Now d,, €A} and c,d,'eAq, so c,€A;, a contradiction, and we have shown that
AmA, = Aq.

We now denote I1*(4), u€M; Ag) by A’, and proceed to show A’ = A. An element
of A may be written in the form % = [k,...k,], h;€ 4 . An element of A’ may be
written as an equivalence class k' = (hy...ly,), b €A} Finally, each of the &; is
a member of 4 and thus may be written as ki = [k 1.k o), By ;€ 4 o, - Now define
amap f: A — A’ by f([hy...h,]) = (hy.. k), i€ A < Al fis a well-defined groupoid
map. Define f': A" > 4 by F(Ry . Pgy) = [y, 1o Py, oo, 1. Fo, ] WheTe [Ry . Ry )]
is any word representing %; e 4, as a member of 4 = I*(4,,ped;A,).

Now f’ is well defined since

(1) Any two representatives of h; are equivalent in 4.
(2) An identity in A’ is one in 4.

2 PSP 69
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(3) If h; b/, = h*is an elementary equivalence in A’ (so that all three lie in some A4)),
then [R; 1.7 ohsia,1.--Risa,rarn] 18 & representation of k¥ in A, and any other
representation of 4] is equivalent to it.

Thus any elementary equivalence in A’ induces an equivalence in 4; so f’ is well
defined. Since f and f’ are inverses, 4 is isomorphic to 4’, and 3-2-1 is proven.

Having enlarged 4, by 3:2:1, we have a new representation for 4 and can again
apply 3-2-1 to it. Proceed by transfinite induction: the limit steps present no real
difficulty, since if an element of 4 is generated by 4, and an infinite set S it is in fact
generated by 4, and finitely many elements of S. The argument appears in detail
in (11). We reach eventually

TrEOREM 3-2-2. Suppose A = I1*(4,, pe M;Ay). Suppose S is a subset of A well
ordered by <, and that if s€S, then s is generated by A,V {s'€S|s’ < s} for some p.
Let Aj, denote the subgroupoid of A gemerated by A,U8, for peM U{0}. Then
A = TI*(A,,peM; 4y).

4. ProoF oF THEOREM A

4-1. A (5). While certain of the following constructions work in more general cases,
we now mainly restrict attention to the situation of Theorem A, and apply the results
of section 3 to express H as an amalgamated free product.

Let G = II*(G,, p€ M ; G,) and H be a subgroup of G. By 2-2-3, since @ is a groupoid
with 77(@, 1) = @, there are a groupoid C, an identity e,€C, and a covering map p:
C - G with p(ep) = 1, such that p is an isomorphism from 7(C, ¢,) onto H. By 3-1-1,
C = I*(C,, ue M;C,) where C, = p~(G),), pe M U {0}.

We make conventions regarding base-points in C. The ¢, referred to above is the
base-point of € and C,. Each component C, of C, will have a base-point (denoted eg,)
with e, = gy € Oy, the base-point of its component, and e, € p~*(1) otherwise (each G,
intersects p—1(1), since it must contain some identity). Each component Qs ohl,
contains at least one component of C, (since C' is connected); choose an ¢, from the
possible e,,’s. For any subset X of C, denote the subgroupoid generated by C, U X
by C,(X), and take as its base-point some e, contained in it. We will often denote the
base-point of a groupoid by *, when the groupoid involved is clear.

The following theorem combines two theorems of Stallings (13).

TarorEM 4-1-1. Suppose C = I*(C,,pe M;Cy) and B = [1*(B,,pe M;B,) are

amalgamated free products of groupoids, f: C — B such that f(C,) < B, Suppose :

(1) C, B, and B, are connected, C is disconnected.

(2) f:m(C,*) - m(B,*) s onto.

(3) If a is aloop in C,, f(a)€ By, and f(a) is not an identity, then a€C,.
Then there exists a @' € M and a path s€C,, such that e(s) and e(s™) are base-points of
distinct components of C,, and f(s) € B,.

Proof. Let p € C be a path connecting base-points of two components of Cy; then the
product eq, peys, is defined in C. f(p) is a path in B with end-points in B,. There is a
path p’ in B, from f(ey,) to fley)- f(p)p’ is a loop in B at f(eyy). Since the map re-
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stricted to fundamental groups is onto, there is a loop ren(C, €o1) With f(r) = f(p)p’.
Let g = p~'r; then ¢ is a path from ey, to ey, and f(q) = flp71)f(p)p’ = p’€B,.

Next write ¢ = g;...q, in reduced form: no g, an identity, each 9 in a Oy,
A(3) % (i +1). Write at each juncture g,(r;7;) ¢, = (g;7;) (ri'q41) for ¢;9;,, where
r;€C, runs from e(g;,,) to the base-point of that component of €, so that each g; has
as end-points base-points e,

If any of the g, is a loop with f(g;) an identity in B, write ¢ without that q; (preserving
f(q) € By) and again put it in reduced form. Note that if ever ¢ — ¢, the theorem is
proven.

Now ifg = ¢;...g, denotes the finally reduced expression, and if ¢, is a loop, then f(q;)
is a non-trivial loop and by (3) cannot lie in B,. Now write f(¢) = f(@1)...f(g,) = p'€B,.
By 2-3-3, some f(g;) lies in B,. That ¢, cannot be a loop; so it is the path s demanded
by the theorem.

Now consider the case of Theorem A. Here f: (@, pe M;Go) > II*(K ,, pe M).
»:C— @ is a covering map, and fp: 0 — K satisfies the hypotheses of 4-1-1 if G, is
disconnected. Let s denote the path found by 4-1-1. Now by 3-2:1,

O = II*%(C,({s}), ne M ;Cy({s}))-

Further, since fp(s) e K, = {1}, seker fp and also fp(C.({s})) = K. Hence, if Cy({s}) is
disconnected, we may apply 4-1-1 and 3-2-1 again. We may continue by transfinite
induction, applying at each stage 4-1-1 and 3-2-2, finally obtaining

ProrosiTioN 4:1-2. Given a groupoid C = 0*C,, pe M;Cy) and a group
K = %K, pe M),
Jp:C — K with fp(C,) =« K w O connected, fp:m(C,*) > K onio, and C, disconnected,

there exists an S < C with the following properties :

(1) 8 is well ordered, with order denoted <. If seS, and C.(8,) is generated by
C,U{s'e8|s" < s}, then s€C,(S,) for some p.

(2) The end-points of s€S lie in O, and are base-points of distinct components of
OO(SS)'

(3) fp(8) = {1,

(4) Cy(8S) is connected.

COROLLARY 4-1-3. Under the hypotheses of 4:1-2,
(0, %) = I*(@(C,(8), *), we M;m(Cy(S), *))
by 3:1:2. Under the hypotheses of Theorem A, letting H, = pn(C,(8), *),
H = pn(C,*) = I1*(H,, pe M; H,), )

since p is an isomorphism of m(C, *). Also, f(H,) = fpm(C,(8), *) < fp(C,(8)) = &

We have thus established conclusion (5) of Theorem A.

4-2. A (6). A clear intuitive implication of (1) and (2) of 4-1-2 is that S is ‘treelike’.
Let @ be the subgroupoid of C generated by S.
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LEMMA 4-2-1. Q is connected and simply connected.

Proof. The identities of @ are precisely the base-points e,. C,(8) is connected, so it
contains a path between any two base-points ey, and €. But then such a path can be
built using only factors from S, as the factors in G, never run from one component of
C, to another. Hence @ is connected.

To show @ is simply connected, suppose s,...s, to be a non-trivial loop of minimal
length, n > 1, since an s; can be a loop only if it is an identity. No s;, s; can be equal
for i < j, for then s;...s;_; would be a shorter loop. Similarly no s; = sj*. Thus some
stlisthegreatest (fortheorder < of 8)of si!, 55", ...sn " Hence s, ,...8,81...8; 1 € Co(Ss,),
and thus the two end-points of s; lie in the same component of Gy(S;,), contradicting (2)
of 4-1-2. Thus @ contains no non-trivial loop.

Tt follows that if e, and e, are base-points of two components, there is a unique
path in  connecting them.

LEMMA 4-2-2. Under the hypotheses of 4-1-2, if cem(Cy(S), *), then ¢ may be written in
the form ¢ = (¢,6197 ") (426292 ). (20 CnTn ) where each c,em(Cy,, e,,), v = v(i), and each
q; is the unique path in q from ey = €, 10 €,

Proof. Since c em(Cy(S), *), write ¢ as d;...d,,, d;€C, or d;e8S or d;*e 8. Group terms
S0 ¢ = ¢}C1q4Cs...Conizs ¢ €Co, ¢i€Q. Now each c; starts and ends at a base-point e,
80 ¢;€7(Cy,, €,)- Let q; be the unique path in @ from e, to ¢,,. Now

¢ = 416,(47¢1) 42(95792) Ca- . (@0 Tn) CnTna
= (q16,47) (19295 Y) (@2292 ). - (@nCn 1)
= (¢16197Y) (¢20292 1)+ (I Cnqn™)
by the simple-connectedness of ¢, completing the proof.

PrOPOSITION 4-2-3. Under the hypotheses of Theorem A, H, is generated by certain
subgroups gy, Go, 90, with each G, = Gq and each gq, eKerf.

Proof. Hy = pm(Cy(S), *). But 7(Cy(8S), *) is generated by the various g,7(Cy,, €,) ¢,
so H, is generated by the p(g,) pm(Cy,, €o,) P(4, 1), Further, p carries 7(C,,, €,,) isomor-
phically onto a subgroup of G, since p|m(Cy(8), ey,) is one-to-one and

7T(COxn eo») = 7’(00(8)’ eOv)'

Finally, g,, € Ker f since g, lies in p(@) and fp(@) = 1 by Theorem 4-1-2.

This establishes (6) of Theorem A. The machinery may in fact lend itself to a stronger
result. For instance, Karrass and Solitar (8) express a subgroup of (4*B; U) as a free
product with amalgamated subgroup and show that the amalgamated subgroup may
be expressed as a ‘tree product‘ of certain subgroups. It would seem plausible to
hope that 7(Cy(S),*), generated by the groups 7(C,,, *) conjugated by elements of
the tree Q, is in fact such a ‘tree product’.

4-3. A(7). Establishing that H, has the desired structure is only slightly more
complex. Since H), is isomorphic to m(C,(8),*), we study that. For each component

C,, of C,, choose a path g, €@ from ¢, to ¢, Then q,,7(C,,, €,,) @t < m(C(8), *).
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Note that there may be several paths running from e, to C,, since C,, may contain
more than one component of C;. Let us denote such a path in @ by q,s- For each
9, such that ¢;.tq,,¢C,, choose a path c,; in C,, running from e(q;;}!) to e(g;3), so that

Qs T 18 & loop in C(8).

Lemma 4-3-1. m(C,(8), *) is generated by the growps 9wm(Cs €,,) ;" together with the
elements q,,¢,,s qus-

Proof. cem(C,(8), *) may be written ¢ = gyc,q}¢s...C,qp, With ¢;€0,, q1€Q. Insert
terms g; 1q;, where g, starts at e,, so that

¢ = 9o¢1(91191) 41(92 ' 92) - (@02 19n1) (Tn1) Cun
= (@) (1 9162927)- . (n-19n-1CnTn)-
That is, ¢ is generated by terms of the form g;c;g;;* where ¢;€C, and g; and g, start
at ¢,. But all such terms are generated in the desired way: for if 9519, = €0,
then g;cqi! = q,,(co*c) gict; while if 9;'9,,¢0C,,, one of the generators is an element
9,697 % ¢;€C,,, and g;eqit = (q,,¢;471)™ (¢wc;icqx). The g, may be accounted for
similarly.

ProrosiTioN 4-3-2. Under the hypotheses of Theorem A, H, is generated by certain
subgroups g,,G 9., together with certain elements g,9,9,, where Gu < Gy 926G, and
all g,,,9:,gs€kerf.

Proof. Here G, = pm(C,,,e,,), 9w = P(q,), a0d ¢1 9593 = P(,,¢,593")- In particular,
gs = p(cﬂé‘) Ep(opv) = G/AV S G,u'

This completes (7) of Theorem A.

4-4. A (8). It remains to show that if G,y = {1}, the situation reduces to the Kurosh
theorem. Since then H, is generated by groups g,,{1} g5, = {1}, H, = {1}. Throughout
4-4, we suppose Gy = {1}. Recall that S is well-ordered and that for any s€.S, S, denotes
{s'e8|s" < s}.

LemMA 4-4-1. Gy is simply connected, and for any s, Cy(S,) is simply connected.

Proof. G, can contain no non-trivial loop since p(C,) < G, = {1}and thus p(l) = p(e(l))
for any loop [, so I = e(l) is an identity. 4-2-2 implies that Cy(S) is simply connected
when C is, and since Cy(S,) = Cy(8), Cy(S,) is simply connected.

LEMMA 4-4-2. Let ¢ = ¢y¢,4;...¢,9, be a loop in Cy(S) for some v, where each c,eC,,
and each q; is generated by elements in S\C,, and no c; or q; is an identity (except perhaps
90> 9»)- Then c is not an identity in C.

Proof. Write out ¢ as a product of elements of C, and S, where seS appears as s
or as s~1. Define the rank of ¢ to be the greatest s (in the order on S) which appears
(where the expression for ¢ is chosen to minimize this) and 0 if no s appears. Now
every element c € ,(8) has a rank in § U {0}; we prove the lemma by induction.

Ifrank (c) = 0, ¢ = ¢, and we are done, since ¢, is not an identity. Suppose now that
rank (c) = s, and that the lemma holds for all ¢’ of lesser rank. Surely s¢C,(S,), for if
not, ¢ can be written without using s, and rank (¢) < s. So, by 4:1-2, se C,(8S,) for some
V' & v. Write ¢ in reduced form relative to O' = I1*(C,(S,), p € M; Cy(S,)):

¢ = dys*ld; st s, d,€C(S,), steC,(8S,).
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Now if any d; fails to be a loop, that d; (or perhaps d;d,, if m = 1) connects e(s) and
e(s™1), and thus cannot lie in Cy(S,). If every d; is a loop, some d, is not an identity
(since some ¢, is not an identity) and thus cannot lie in Cy(S;) (which contains no non-
trivial loops). Hence some d; € C,(S)\Cy(S), and by 2-3-3, ¢ is not an identity.

PROPOSITION 4-4-3. Under the conditions of Theorem A, with Gy = {1}, H, is freely
generated by the groups p(q,,) p(m(Cyy, €,)) P(q5) and the elements P(q,,C,s95s)-

Proof. We show that 7(C,(S), *) is a suitable free product in C. It is generated by the
proper things, by 4-3-2. If it is not freely generated, then there is some expression
r = (¢16,4%)...(2nCn q,) Which is reduced and non-trivial in the free product, but an
identity in C,(S).

However, r can collapse to an identity when reduced to the form of 4:4-2 only if
all of the ¢} q;,, collapse to identities. The only way elements of the big free product
can meet this condition is if ¢;,;¢;,1¢}+, is one of the elements g,,¢,,¢.s" and g;¢;4;
comes from the group ¢, 7(C,,,¢,,) ¢, (otherwise, r would not be reduced in the free
product generated by the groups and elements). But then

(4:¢:93) Qis1Ci19i1) = T CiCusTud
which cannot vanish since ¢, is a loop and ¢, is a path. Further, g,, + (¢;—)~" and
it % Gi42; S0 no additional reductions interact with this one. Hence, r does not vanish

when written as in 4-4-2, so » cannot be an identity in Cy(S).
This completes the proof of Theorem A.

5. REMARKS

5-1. Theorem 3-2-2 has a simple corollary obtained by replacing groupoids with
groups. One implication is that if ¢ = [1*(G,, p € M ; G,), it is easy to find an expression
Q = %G, pe M; ;) with @), > G, G > Gy. It might be of some interest to find
‘finer’ factorizations, i.e. G = II*(G,, u€ M;Gg) with G, = G,. Do there in general
exist minimal factorizations? If H = @ and G has a minimal factorization, can one be
found for H? In a later paper, the author hopes to explore implications of a converse
of 3-2-2: if G, and @), are related as above, G has a subset S such that G,, S, and @,
satisfy 3-2-2.

5-2. Theorem 4-1-1 has a limited amount of extra generality. The following is an
easy corollary.

ProrosiTioN 5:2-1. Let @ and K be amalgamated free products of groups (K is not
required to be a free product), f: G — K a factor-preserving map, and H a subgroup of G
with f(H) = K. Then either H = II1*(H,, p€ M; Hy) with each H, = G, or there is a g
in some G ,\G, with f(g) € K.

Proof. Let C be a connected covering groupoid of ¢ with #(C,*) = H. If C, is con-
nected, H may be factored in the desired way by 3-1-2. If C; is disconnected, apply
4-1-1. If hypothesis (3) fails, there is a loop @ such that p(a) is the desired g. 1f (3) holds,
the theorem produces an s such that p(s) is the desired g.

5-3. An alternative way to obtain H, < G, is to enlarge ¢, by applying 3-2-2.
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ProrosiTiON 5:3:1. Let G =1I%G,,peM;Gy) and K =11*(K,peM) be an

amalgamated free product and a free product of groups. Let f: G — K satisfy f(& W< K,
Jor all p. Suppose H is a subgroup of G such that f(H) = K. Then there are factorizations
G = II*(G(R),pe M ;Gy(R)) and H = I*(H,, p€ M; Hy) with H, = G (R) and

fG R)) = K,.

G ,(R) denotes the subgroup of G generated by G, U R, where the set R may be chosen to be
well ordered in such a way that if re R, r is generated by the elements preceeding r in R,
together with elements of some one G,.

Proof. Construct the covering p: C' — @ with pm(C,*) = H. If C, is connected, we
are done, with B empty. If not, find the subset S given by 4:1-2. Now p(8) = R < @
satisfies the conditions of 3-2-2, yielding the desired expression for @. Since f(R) = {1},
and H, = pm(C,(8), *), the result follows easily.

This proposition yields helpful results only if @ & G,(R). One way to guarantee this
is to have K 4 {1}, since then f(Gy(R)) = {1} & K = f(@). An alternative way presents
itself, for instance, if H is of finite index » in @; C, then has at most » components, so
S and R are generated by at most n — 1 elements.

REFERENCES

(1) BaER, R. and Levi, F. W. Freie Produkte und ihre Untergruppen. Compositio Math. 3
(1936), 391-398.
(2) Brown, R. Elements of modern topology (McGraw-Hill; London, 1968).
(3) GrusEEKO, I. On the bases of a free product of groups (Russian). Mat. Sb. 8 (1940), 169
182.
(4) Havn, MARSHALL, Jr. The theory of groups (Macmillan; New York, 1959).
(5) Hiceins, P. J. Presentations of groupoids, with applications to groups. Proc. Cambridge
Philos. Soc. 60 (1964), 7-20.
(6) Hiceins, P.J. Gruskho’s theorem. J. Algebra 4 (1966), 365-372.
(7) Kavasenikov, V. and KurosH, A. Freie Produkte der Gruppen mit vereinigten Unter-
gruppen der Zentren (Russian). Dokl. Akad. Nauk, SSSR, 6 (vol. 1, 1935), 285-286.
Cited from Zbl. Math. 11 (1935), 151.
(8) Karrass, A. and Soritar, D. The subgroups of a free product of two groups with an
amalgamated subgroup (to appear).
(9) KurosH, A. Die Untergruppen der Freien Produkte von beliebigen Gruppen. Math. Ann.
109 (1934), 647-660.
(10) NEUMANN, HANNA. Generalized free products with amalgamated subgroups. I. Amer. J.
Math. 70 (1948), 590-625; II. Amer. J. Math. 71 (1949), 491-540.
(11) OrpmaAN, E. T. Amalgamated free products of groupoids (Ph.D. thesis, Princeton Uni-
versity, 1969).
(12) OrpmAN, E. T. Subgroups of amalgamated free products. Bull. Amer. Math Soc. 76 (1970),
358-360.
(13) Srarrings, J. R. A topological proof of Grushko’s theorem on free products. Math. Z. 90
(1965), 1-8.
(14) WaexNer, D. H. On free products of groups. Trans. Amer. Math. Soc. 84 (1957), 252-2178.



