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To partition the edges of a chordal graph on n vertices into cliques may require
as many as n? /6 cliques; there is an example requiring this many, which is also a
threshold graph and a split graph. It is unkmown whether this many cliques will
always suffice. We are able to show that (1 — c)n? /4 cliques will suffice for some
c>0.

1. Introduction

We consider undirected graphs without loops or multiple edges. The graph Kn on n
vertices for which every pair of distinct vertices induces an edge is called a complete
graph or a cliqgue on n vertices. If G is any graph, we call any complete subgraph of
G a clique of G (we do not require that it be a maximal complete subgraph). A clique
covering of G is a set of cliques of G that together contain each edge of G at least once; if
each edge is covered exactly once we call it a clique partition. The clique covering number
cc(G) and clique partition number cp(G) are the smallest cardinalities of, respectively, a
clique covering and a clique partition of G.

The question of calculating these numbers was raised by Orlin [13] in 1977. DeBruijn
and Erdés [6] had already proved, in 1948, that partitioning Kn into smaller cliques
required at least n cliques. Some more recent studies motivating the current paper include
(11, 14,2, 7, 9].

It is widely known that a graph on n vertices can always be covered or partitioned
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by no more than n?/4 cliques; the complete bipartite graph actually requires this many.
Turédn’s theorem states that if G has more than n?/4 edges, it must contain a clique Ks;
if it has more than n®(c — 2)/(2c — 2) edges it must contain a K.. (For a more precise
statement and proof, see e.g. [3, Chapter 11].)

A subgraph H of a graph G is an induced subgraph if for any pair of vertices a and b
of H, ab is an edge of H if and only if it is an edge of G.

Two classes of graphs we shall refer to here are chordal graphs and threshold graphs. A
graph is chordal (or often triangulated; [10, Chapter 4]) if every cycle of size greater than
3 has a chord (no set of more than 3 vertices induces a cycle). A graph G is threshold
([10, Chapter 10; 4; 5; 12]) if there exists a way of labelling each vertex A of G with a
nonnegative integer f(A) and there is another nonnegative integer ¢t (the threshold) such
that a set of vertices of G induces at least one edge if and only if the sum of their labels
exceeds t.

A graph is split if its vertices can be partitioned into two sets A and B such that the
vertices A form a clique and the vertices B induce no edges. (Two vertices, of which one
is in A and one is in B, may or may not induce an edge.)

All threshold graphs are split and all split graphs are chordal. In a sense, most chordal
graphs are split [1]. Induced subgraphs of chordal graphs are chordal; similar results hold
for split graphs and threshold graphs.

2. Préliminary results on split graphs

A complete matching in a graph G is a set of edges such that each vertex of G lies on
exactly one edge in the set. It is well known that the (2t — 1) edges of K3 can be
edge-partitioned by a set of 2t — 1 matchings, each of t edges. By the join of two graphs
G and H, we mean the graph made by taking the disjoint union of the two graphs and
adding all edges of the form gh, where g is a vertex of G and h is a vertex of H.

By the graph K, — K,,, for n > m, we mean a graph made by taking K, and deleting
all the edges induced by some particular m of the vertices. Equivalently, this is the join
of K,_m with the complement of K, (a collection of m isolated vertices).

Lemma 2.1. Let G = Ky — K2¢. Then cp(G) < t(2t + 1).

Proof. Think of G as a complete graph A = K joined completely to an empty graph
C on 2t vertices. Partition A into 2t — 1 disjoint matchings; join each matching to a
different vertex in C, each matching yielding ¢ triangles. The remaining vertex in C lies
on 2t single edges to A. Thus we partition G by t(2t — 1) triangles and 2¢ single edges, a
total of 2(2t + 1) cliques. O

In fact, cp(G) = t(2t + 1). See, for example, [7].

Lemma 2.2. In the graph G of the previous lemma, suppose r edges are deleted. Then
this new graph has clique partition number not exceeding t(2t + 1) + r.
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Proof. Start with the same partition as above. Each edge deletion at worst demolishes
one triangle, requiring it to be replaced in the partition by two edges. O

3. Preliminary results on chordal graphs

We will rely heavily on the following lemma of Bender, Richmond, and Wormald, which
gives a means of constructing an arbitrary chordal graph.

Lemma 3.1. [1, Lemma 1.] For each chordal graph G and each cligue R of G there is

a sequence _
R=Gr,Gr+1,.‘.,Gn =G

of graphs such that Giyy is obtained from G; by adjoining a new vertez to one of its

cliques.

Corollary 3.2. IfGisa chordal graph on n vertices with largest clique of size r, then
G can be covered by at most n —r + 1 cliques.

It is easy to see that the bound in the corollary cannot be improved; Kn — Ky _ry118
an example requiring n —r + 1 cliques to cover.

Covering G may require less than n — r + 1 cliques. If G consists of two copies of K;
with a single vertex in each identified, G has 2t — 1 vertices, the largest clique is of size
t, this corollary produces a covering by (2t —1) —t+1=1 cliques, but obviously there
is a covering (and for that matter a partition) by two cliques.

We now utilize this construction with one additional specialization: we begin with
a clique of maximum possible size in G. Supposing this clique to be of size 7, each
subsequently added vertex will add, at the time it is adjoined, at most r — 1 edges (or it
would form a clique of more than r vertices).

Corollary 3.3. A chordal graph on n vertices with a largest clique having r vertices has
at most (n-r)(r-1) edges outside that clique.

Theorem 3.4. Let G be a chordal graph on n vertices and 1/4 > d > 0. Suppose G has
at least dn? edges. Then G contains a clique with at least (1 — 1 — 2d)n > dn vertices.

Proof. If the largest clique in G contains cn vertices, then that clique contains cn(en —
1)/2 edges and each of the remaining n — cn vertices of G can be added to G adding at
most cn — 1 edges at each stage. Hence the total number of edges of G is at least dn?
and at most cn(cn — 1)/2 + (cn — 1)(n — ¢n), so dn < (2¢c — ¢?)(n/2) + (c — 2)/2 and
dn < (2c — ¢?)(n/2) since ¢ < 1. Hence d < (2c—c?)/2and ¢ > 1-VI-2d>das
needed. a

The result of this theorem turns out to be essentially best possible, not only for chordal
graphs, but for split graphs and threshold graphs as well.
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Example 3.5. Let 0 < ¢ < 1. Consider the graph K, — K where k =n —cn +1, that
is, the base clique has cn — 1 vertices and forms a clique on cn vertices with each other
vertex. Clearly there are

(en—1)(cn—2)/2+(n —cn+1)(cn = 1) = (c = ¢*/2)n® — (1 = ¢/2)n

edges. So a graph can be threshold (hence split and chordal) and have almost (c—c?/2)n?
edges and no clique on more than cn vertices.

4. Clique partitions of chordal graphs

An arbitrary graph on n vertices may require n?/4 cliques to cover or partition it [8].
We saw above that a chordal graph on n vertices may always be covered by fewer than
n cliques. It may, however, still require a large number of cliques to partition it. The
examples in [7] with high clique partition numbers are chordal graphs.

Example 4.1. {7] The graph K, — K34/3 requires n?/6+n/6 cliques to partition it and
2n/3 cliques to cover it. Thus for a chordal graph, both ¢p(G) and cp(G) — cc(G) can be
approximately n?/6.

We note that for a different example, the ratio of ¢p(G) to cc(G) may be larger.

Example 4.2. [7] The graph G, composed of 3 cliques K,/3, with all vertices of the
first clique attached by edges to all vertices of the second and third, is a chordal graph
(but not a split graph or threshold graph). As n increases, cp(Gn)/cc(Gn) grows at least
as fast as cn? for some ¢ > 0.

We do not know if ¢p(G) can significantly exceed n?/6 for a chordal graph, or even for
a split graph or a threshold graph.

Conjecture 1. The clique partition number of a chordal graph, split graph, or threshold
graph on n vertices cannot ezceed n2/6 (except by a term linear in n).

It is even possible that K, — K3p/3 is literally the best example. (Some very minor
adjustments to n?/6 + n/6 may be needed because of round-off error). However, it is
unclear how one would go about proving the following:

Conjecture 2. No chordal, threshold, or split graph on n vertices requires more than
cp( Kn — Kany3) cliques to partition it.

For chordal graphs in general, we are very far from proving that n2/6 cliques will
suffice for a partition. In fact, we can improve only slightly on n?/4.

Theorem 4.3. There is a constant ¢ > 0 such that if G is a chordal graph with n
vertices, G may be partitioned into no more than (1 — c)n?/4 cliques.
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Proof. As the details are messy, we first give an outline; we follow this by some indication
of more precise calculations, which the reader may choose to ignore, and a few numeric
indications. As the result is clear for n < 5, we assume n > 5 in the proof. Let the largest
clique in G have (1 + a)n/2 vertices (a may be negative). Pick such a clique and call it
A. Let C denote the subgraph of G induced by those vertices not in A; the set of edges
not in A or C will be denoted B.

In case 1, The large clique is larger or smaller than half the vertices by a reasonable
amount (a? > ¢). By Corollary 3.3, there are so few edges outside A that we can cover
them by single edges. In case 2, A has close to half the vertices, and C has a significant
number of edges. By Theorem 3.4, C contains a large clique C '+ we can cover by A, C’,
and single edges. In case 3, A has close to half the vertices and C' has few edges; in this
case the graph must be very similar in form to K, — Kn/2 and Lemma 2.2 can be used
to construct a partition with ‘little more than’ n?/8 triangles and edges.

We now give somewhat more precise calculations.

1 If a® > ¢, we can cover A with one clique and each edge not in A by a single edge.
The number of edges outside A is at most

(1 - a)(n/2)((1 + a)n/2 — 1) < (1 —a*)n?/4 < (1 = c)n?/4

as desired. Hereafter, we suppose a < c.

2 If C has very many edges, we can cover A with a clique, the largest clique in C
with a clique, and all other edges singly. Suppose C has dn? edges. Then, since C
is an induced subgraph of G, it is a chordal graph with v = (1 — a)n/2 vertices and
dn? = (dn2/((1 — a)n/2)?)v? edges; so by Theorem 3.4 it contains a clique with at
least (dn?/((1 — a)n/2)%)v = 2dn/(1 — a) vertices and (2(dn)? - dn(1 — a))/(1 — a)?
edges. Covering this clique by itself, A by a clique, and each remaining edge with an
edge, we get a number of cliques guaranteed to be less than

2+ (1-a*)n?/4 - (1 - a)n/2 — (2(dn)® - dn(1 - a))/(1 - a)?

=(1-a®-8d%/(1-a)*)n?/4+2— (1 —a)n/2+dn/(1-a)
Now supposing ¢ < .01, |a| < .1, n > 4, and d < .04, we see that

2/n+d/(1-a)+a/2<1/2,

8o
2-(l-a)n/2+dn/(1—a)<0

and we need only have

1-a?-8d*/(1-a)’<1-c
to finish, which is clearly true if d* > (¢ — a?)(1 — a)?/8. If that condition is met,
we are done. Hereafter, we assume that d? < (¢ — a?)(1 — a)?/8, and hence that
d? < ¢(1 + \/€)?/8. In particular, as ¢ nears 0, so does d.

3 In the remaining case, we will cover the edges in C by single edges, and cover the edges

in B and A by triangles and single edges using the technique of Lemma 2.2. Consider
the number of edges in B. Since B and C together must have at least (1 — c)n?/4
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edges and C has no more than dn? edges, we see that B has at least (1—c— 4d)n?/4
edges. In the ‘complete’ graph H = Ky — K(1-4)n/2 there are (1 — a?)n?/4 edges in
B, so we see that if we can partition H by edges and triangles, we can partition G
with only a few extra cliques: dn? for the edges in C and an allowance of at’most
(1 - a?)(n?/4) — (1 — c — 4d)(n?/4) = (c — a® + 4d)n?/4 for the ‘missing’ edges of B.
We now set out to clique-partition H. We neglect some constant multiples of n to
reduce the bulk of the expressions below. As in Lemma 2.1, partition A = K(144)n/2
into (14 a)(n/2) — 1 matchings of (1+a)(n/4) edges each (if (1 +a)n/2 is odd, there
is an extra linear factor in n neglected below). We must consider two subcases, a > 0
and a < 0.

If a > 0 we join (1 — a)n/2 of these matchings to distinct points in C to form
(1—a?)n?/8 triangles consuming all the connecting (B) edges of H; this leaves (2a)(1+
a)n?/8 edges of A unused and we cover them with single edges. Thus we partition
H with (1 — a?)(n?/8) + a(1 + a)(n?/4) triangles and edges. This means we obtain a
clique partition of G using no more cliques than

(1 - a®)(n?/8) + a(1 + a)(n?/4) + dn® + (c - a® + 4d)n’/4

= (n?/4)[(1/2)(1 - a®) +a(1+a) +4d + (c — a’ + 4d)].

But it is easy to see that as ¢ approaches 0 so that a and d also approach 0, this
expression approaches (n?/4)[1/2+ 0+ 0+ 0], so it can clearly be made less than
(n?/4)[1 — ¢] as required.

If a < 0 we are able to join all the (1 + a)(n/2) — 1 matchings in A to distinct
points in C. The resulting (1 + a)?n?/8 triangles consume all (except a constant
multiple of n) of the edges of A but only (1 + a)?n?/4 edges of B, leaving as many
as (1 — a?)n?/4 — (1 + a)?n?/4 to cover with single edges. Thus we partition  into

(1+a)%(n?/8) + (1 — a®)(n*/4) = (1 + a)*(n?/4)

cliques (which approaches (1/2)n?/4 as c approaches 0), and the rest of the argument
goes exactly as in the prior paragraph.

A somewhat more careful calculation suggests that letting ¢ = 1/400 will easily suffice
for n > 5, forcing |a|] < .05 by case 1 and d < .02 by case 2. Unfortunately, linear
terms neglected here, such as (1+a)n/4, complicate the actual calculation of ¢ badly
for low values of n. [

If we require G to be threshold, or split, the situation simplifies somewhat, since C' will
contain no edges and case (2) becomes unnecessary. Still, this method appears to produce
only a marginal improvement in the c in these cases. The first two authors and Guan-Tao
Chen have made some further progress in the case that G is a split graph, but are still
not close to n2/6; this will be pursued elsewhere.
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