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1. Introduction. It is widely known that free products and free products
with amalgamation (coproducts and push-outs) exist in the category of
topological groups. It is natural to ask if the underlying abstract group
of such a product is the corresponding product of abstract groups, and
it is not difficult to see that this is the case (Theorems 1 and 2). Another
logical question is the following:

(Q) If F is the free product of Hausdorff topological groups G, aeA
(perhaps with an amalgamated: subgroup H), is F necessarily Hausdorff?

In [3], Graev settles (Q) affirmatively for free products. He employs
a rather long and delicate argument. An independent proof is given by
Hulanicki [4] for free products of compact Hausdorff groups. More recently
Morris [8] announced a simpler proof for all free products. His proof
used pseudometries to construct a topology 7, in the algebraic free product;
unfortunately, the topology he constructs makes the group operation
discontinuous. In this paper, using a technique similar in principle to
that of Morris (if somewhat more complex) and simpler than Graev’s
technique, we establish that a free product of Hausdorff groups is Haus-
dorff provided that the original groups are locally invariant, i.e. every
neighborhood of the identity contains a neighborhood invariant under
inner automorphisms. This is equivalent to requiring a group to have
equal right and left uniformities, or to requiring each group to have
a topology determined by the collection of continuous (two-sided) in-
variant pseudometrics on the group (see [5] and [6]). This class of groups
includes all Hausdorff groups which are compact, abelian, or have an
invariant metric.

We also establish an affirmative answer to (Q) for a free product
of topological groups ¢, with an amalgamated subgroup H, provided
that each G, is locally invariant, H is closed in each @, and that, for every
pair a, feA, there is a continuous homomorphism mj: G;— G, which is



38 E. T. ORDMAN

a homeomorphic isomorphism of H = G; on H < @G,. The last requirement
is met, for instance, if all G, are equivalent (by homeomorphic isomorphisms
preserving H) or if H is a retract of each G,. We do not know if any of
these conditions are necessary. (P 901)

The difficulty in the proof of Morris can be clarified by realizing that
if a topology on a free product is to make the group operation continuous,
every neighborhood of the identity must be “big” in the following sense:

Propostrion 1. Suppose that F is a topological group which is mot
discrete, F' is algebraically the free product of certain subgroups @,, aecA
(A mot a singleton), and that g,q, ...g, is the reduced form of some geF.
Then every neighborhood N of the identity e of F contains an element whose

reduced form is ¢y ... g.909," --- 91"

Proof. Since geg~' = e and the group operation is continuous, there
is a neighborhood N, of e¢ such that gN,g ' < N. Let g,¢@,, and let §
be distinet from a. Then N, N (G, {e}) is non-empty and the conclusion
follows by selecting ¢, from it.

The author would like to thank Professor E. E. Enochs with whom
he has had numerous helpful discussions.

2. Results. The following theorem is special case of a widely-known
construction, another special case of which occurs, e. g., in [1].

THEOREM 1. Let G, be a topological group for each a in an index set A.
Let H be a topological group, and, for each aeA, suppose h,: H—@Q, is
a homeomorphic isomorphism onto a subgroup of G,. Then there are a top-
ological group F and maps i,: G,—~F such that

(1.1) Hach i,: G,—F is a continuous isomo1*p71is1n onto i,(G,).

(1.2) As an abstract group, F is isomorphic to %(G,: H), the free prod-
uct of the abstract groups G, with H amalgamated. In particular, i, h, = izhg
for all a, peA.

(1.3) For every topological group K and every system of continuous
homomorphisms k,: G,— K such that k,h, = kghg for all a,feA, there is
a unique continuous homomorphism k: F— K such that ki, = k, for each a.

Proof. Let {K,; yeI'} be the set of all distinet (up to homeomorphic
isomorphism) topological groups of cardinality not exceeding that of the
disjoint union of the @G, (include groups of countable cardinality, if the
G, are finite). For each y, let i{k;ﬁ de,} be the collection of all systems
of continuous homomorphisms k7,: G,— K5, where aed and K, = K,
for which kjsh, = ki,h, for all a, fcA. Let P denote the direct product
of the K, for all y, 6. Then P is a topological group. We now map each
G, into P by the map

to(9) = {ks(9); vel', 0ed,} for acd, ge@,.
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1t can be readily checked that each i,: G,—~P is a continuous homo-
morphism, and, clearly, izhy = i,h,. Now let F denote the subgroup of
P generated by U i,(G,) with the relative topology.

We now establish the existence of the map & of (1.3). Let K and
{k,} be as in (1.3). Without loss of generality, we may suppose K is
generated by UFk,(@,). Thus, for some y and 4, we have K = K, and

k, = kjs, and the desired map k: F— K is just the projection of F < P
on the y, é-coordinate.

We next complete (1.1) and (1.2). Let K be % (G, H) as an abstract
group, and give K the indiscrete topology. Now each natural injection
k,: G,—~ K is a continuous homomorphism, so k: F— K is a continuous
homomorphism. Since ki, = k., i, IS an isomorphism of G, on ,(G,).
F as an abstract group is generated by the i,(@,) and maps onto x(G,: H);
hence k is an isomorphism of F with x(G,: H) a8 abstract groups.

Finally, in view of (1.2), the map k& of (1.3) is, clearly, unique. This
completes the proof of Theorem 1.

TurorREM 2. Under the hypotheses of Theorem 1, if F and F, satisfy
(1.1), (1.2) and (1.3), then F, and F, are homeomorphically isomorphic
by a map preserving the G,.

Proof. Suppose given maps iy G,~>F,, r = 0, 1. Applying (1.3)
twice, we get maps i": F,_,—~F,, each a continuous homomorphism.
By (1.2), we see these maps are inverses, completing the proof.

THEOREM 3. Given the hypotheses of Theorem 1, suppose also that,
for each a,feA, there is a continuous homomorphism mj: Gz — G, such
that m§ restricted to hy(H) 1is hohz'. Then

(1.1') Each i,: G,—~F 1is a homeomorphic isomorphism onto IR(CHE

Proof. Fix acd. Let K = G, and let k; = mj: G,—G, for g # a,
letting k, be the identity map on G,. Applying (1.3) we get a map
k: F—>@, such that, in particular, ki,: G,—~@G, is the identity map.
Hence i, has an inverse, and is a homeomorphism.

Remark. No additional hypothesis is thus needed for (1.1") in the
case of a free product. For the amalgamated case, it would be of interest
to know if (1.1’) must hold without the added hypothesis of Theorem 3.

‘We now proceed to state our main theorem.

THEOREM 4. Given the hypotheses of Theorems 1 and 3, suppose also
that, for each aecA,

(4.1) G, is Hausdorff;

(4.2) ho(H) is a closed subgroup of G.; and

(4.3) G, is locally invariant, i.e. has a topology determined by invariant
pseudometrics.

Then F is Hausdorff.
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The proof of Theorem 4 occupies the next section. We observe that
in the free product case, H = {e} and (4.1) implies (4.2). Hence, in this
case, our theorem is distinguished from that of Morris only by (4.3).
Our proof is close enough to his in concept that the other theorems in [8]
can be established as they are there, with the added requirement of (4.3)
for those depending on the Hausdortf property.

3. Proof of Theorem 4. Let F denote the abstract group % (G,: H)
underlying F. We will confuse heH, ge@,, with h,(h)e@, and iq(g) e F,
as convenient. We shall introduce a topology 7 on F which will make
F a Hausdorff topological group and which will induce the original topology
oneach G, < F. Then, applying (1.3) (using F with topology 7 as K),
there is a continuous isomorphism i: F - F ; that is, the topology of F
is finer than v and is, therefore, Hausdorff.

Like Morris, we employ pseudometrics to introduce z. Let {04} ac.4 bE
a collection of invariant continuous pseudometrics 0,: G, xG,—~ R such
that if heH, then o,(h,e) = op(h, e) for all a, feA. We deseribe a pseudo-
metric ¢: F xF—R derived from the g,.

For geF, let G denote some word 919s --- ¢, such that g, G, and
9 =0192... 9, in F. Given G, let H denote a word €163 ... ¢, such that
€1€5 ... ¢, = ¢, the identity of F, and ¢, lies in the same @, as g; does (e; is
not necessarily the identity of a.)

Now let

G H) = Mo, (gi,e) and  f(g,e) — inf f(G, H),

where the infimum is taken over all appropriate pairs of words G, H.
Finally, let

o(g, k) = f(gh™', e).

LeMMA 0. In computing f(g, e), we need only consider pairs G, H
for which g,eH implies e;eH.

Proof. Suppose G =g¢,...¢9, and H — €1...¢, have some g;eH
and ¢,e G, NH. Consideration of the word problem for amalgamated
products [7] shows that there is some r == J (for concreteness, we take
r < j) such that e, Ga]_\H and e, ... ¢, , = heH; otherwise, e, ... 6 750
Now alter H by replacing e; with ¢ = g;eH and replacing e, with e} =
= 6. he;g; h™" e G,,. We still have

* # —-13—1
H'='¢ \..6 8, 0 €16 oo O =€ ... 6_ (6,heg7 W ) hyse;, ... 6,

=6, ...6,he;...e, =¢ ...¢, =e¢
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and f(G, H) has not increased since, because 04, 18 invariant,

gaj(gr7 6:) —I_ Qaj(gj7 6;) = Qaj(gr7 erhejgj—lh_l)
< Qaj(.qr’ er) + 0(1:;(67 hejg,;lib_l) = Qaj(gﬂ er) + Qaj(gj7 ej)
which completes the proof.

LeMMA 1. f(g,e) = inf f(G, H), where the infimum mneed be taken
only over pairs (G, H) for which G is reduced in that either n = 1 or else
each g;e G, NH and a; # a;y,.

Proof. If G is not reduced, we can find a pair (G*, H*) of shorter
words with f(G*, H*) < f(G, H). For suppose g;, g;.,¢€ G,; (note: if g;eH,
this is always true), and g;g;,, = g; ¢ G,,. Then let e;e;,, — €; ¢ G,,. Let

G =g, ...0Qipase g and  H® =epli.efe, e,

By the invariance of g,

0a;(9: i1y €:€i11) < 0a;(9iy €) + 0oy (Fis1y €it1)

and the lemma follows.

Hence, in view of the standard results on free products with an
amalgamated subgroup [7], we need consider only G' of some fixed length
n (depending on g) to determine o(g, e).

LEMMA 2. p is an tnvariant pseudometric.

Proof. It is immediate that o(g,¢) = 0 and p(gk, hk) = o(g, h).
Letting K represent k, we see that o(kgk™', ¢) is bounded from above
by f(KGK™', KHK ') = f(G, H) and thus

o(kgk™, €) < o(g, ).
Similarly,
o (k™ kgk™"k, €) < o(kgk™", €)
and we see that
o(kg, kh) = o(k(gh™")k™", ¢) = o(gh™", €) = o(g, I).

We note that o(g,e) = o(¢97", €), since f(G, H) approximates o(g, €)

if and only if f(G™', H™') approximates o(¢ ', ¢). Hence
e(g,h) = o(gh™, €) = o(hg™", €) = o(h,9).

Finally, the triangle inequality holds, since if f(G,, H,) approximates
¢(91, ¢) and f(G,, Hy) approximates o(g,,e), then f(GyG,, H,H,) is an -
upper bound for p(g,¢9.,€); hence

0(91y €) +0(gay €) = 0(9192y €),
and

o(g, k) +o(h, k) = o(gh™, e)+o(hk™", e) > o(gh™"hk™', €) = o(g, k).
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Now let 7 be the topology induced on F by the collection of all ¢
constructed in this manner [5].

LEMMA 3. F with topology t is a topological group.

Proof. If we recall that sets N,(go, ¢) = {ge Flo(g, go) < ¢} form
a subbase, then g ¢~ is readily continuous, since 0(g1, 92) = o(g7', 951),s
and the group operation is jointly continuous, since o(a,a@,, bib,) <
o(ay, by) + 0(az, by) for each .

LevmMA 4. Let o, be any invariant pseudometric on G,. Then there is
a o such that ¢|G, = @., and thus the topology induced on G, by 7 is the
original topology of G,.

Proof. Fix « and o,. For each feA, let ms: G,—~G, be the map of
Theorem 3 (m? is the identity map). Write ¢;(g1, g2) = Ca (m3(g1), m5(g))-
It is easy to check that gz is a continuous invariant pseudometric on
G and gg(h, €) = 0q(h,e) for all he H and feA. Let ¢ be the pseudometric
on I derived from {oz}scq- If ge Gq, clearly o(g,€) = 0.(g, €) as desired,
completing the proof of the lemma.

~

LeEMMA 5. In the topology v, F is Hausdorff.

Proof. It will suffice, given any ge F, g # e, to find a pseudometric
o such that o(g,e) # 0. If ge @, choose g, such that o.,(g,e) # 0 (G, 18
Hausdorff) and construct ¢ as in Lemma 4. Otherwise, let G = ¢19s --- In
be a word of minimal length representing g. Now [7] the only elements
of the G, that occur in any reduced word representing g are hyg;hy, Where
1<i<n and hy, h,eH.

We observe next that if ge@,\H, there is a continuous invariant
pseudometric on @, with o(g, h) =1 for all he H. For e¢ g H (a closed
set since H is closed) and using the customary Urysohn-motivated argu-
ment, with invariant neighborhoods of ¢, we can construct a continuous
invariant pseudometric g,: G, x G,—[0, 1] such that o,(e, g "h) =1 for
all g 'heg 'H. Then o,(g, k) =1 also.

For each g;, construct such a g,,. Note

il

I

inf{@ai(h'lgihw hy) | hyy hyy hye HY = inf{@ai(gi, hithshy)
Now, on each G, we introduce pseudometrics; for a = a;, the pseudo-
metric g, constructed as above, and for a # a;, the pseudometric induced

on G, from the pseudometric o,, on G,; by the method of Lemma 4. Call
these n pseudometrics g4, 1 <1 <mn, for each G,. Let

0a(g1 92) = Max{04a)(1; g:) |1 << n}

and let o be constructed from {0,}.c.q-
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Finally, look at any f(G*, H). By Lemma 1, we can suppose ¢; g, ... g
reduced; e = e;€, ... ¢, and e;¢ G, , a; # a;,,; 80, by [7], some e;e H. Thus

f(G*, H) = Zéai(g?, €;) = inf{@ai(gra h)y|1<i<n; heH}
>inf{o,, (h1gihay by |1 < @ < N5 hyy hy, hye H} = 1.

Hence o(yg, ¢) = inf f(G*, H) >1 as desired. This completes our proof
of Theorem 4.
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