A MUTUAL EXCLUSION PROBLEM
NEEDING EXPONENTIALLY MANY! TOKENS

EDWARD T. ORDMAN

University of Memphis
COMBINATpRICS PREPRINT SERIES

Institute of Combinatorics

Department of Mathematical Sciences
University of Memphis

Memphis, TN




A Mutual Exclusion Proble

Needing Exponentially Many Tokens

Edward T. Ordman

Department of Mathematical Sciences

University of Memphis,

Memphis, TN 38152 U.S.A.

Abstract. The Ezcluded Tazpayer Problem is a mutual exclusion problem

which shows a limitation of using token-passing method

tual exclusion. Enforcing the mutual exclusion required b

to administer mu-
y this problem can

readily be done in sublinear time and linear space using shared variables, but

if token-passing is used, it requires a number of tokens whi

ch is exponential in

the number of processes. The proof is by making a connection between gen-
eralized mutual exclusion problems and coverings of hypergraphs, and using

a construction on hypergraphs analogous to a standard
subgraphs of threshold graphs.

result on excluded

Keywords: Mutual exclusion, token passing, semaphore, threshold graph,

* hypergraph.

Contact information:
e-mail: ETORDMAN@GMEMPHIS.EDU

To May 8, 1998: U. of Memphis, phone +1-901-678-2482

After May 8: 17 Everett Park, New London, NH 03257,

_phone +1-603-526-6428 (On sabbatical 1998-99; e-ma

1 Introduction

The Ezcluded Tazpayer Problem is a mutual exclusion p1
a limitation of using token-passing methods to administe

Enforcing the mutual exclusion required by this problem
in sublinear time and linear space using shared variables,
is used, it requires a number of tokens which is exponer
of processes. The problem was introduced in [9] but ¢
much longer and worked only in the case when all tokens
process were distinct.

, fax 678-2480.

il is best)

oblem which shows
r mutual exclusion.
can readily be done
but if token-passing
ntial in the number
he proof there was
required by a given




Definition. Mutual Exclusion. In a collection of computer processes,
it may be that not all the processes can be in their critical section at one
time. For example, several processes want to use the printer but only one
at a time can do so. We say that a set S of processes is mutually ezcluding
if not all processes in the set may be active at one time. For instance,
in the Dining Philosophers problem, several philosophers sit around a table;
adjacent philosaphers share a fork and cannot eat at one time; hence each pair
of adjacent philosophers is a minimal mutually excluding set of processes. We
suppose that every superset of a mutually excluding set is mutually excluding.
By a mutual ezclusion problem, we mean a set S of processes and a collection
E = {E\, E,,...,Ex} of mutually excluding subsets of S. One standard
problem of distributed programming is to provide algorithms that will allow
sets of processes to cooperate to ensure that no mutually excluding set of
processes are in|their critical sections simultaneously.

Notation. Multisets. A set has no repeated elements, while a multiset
may have repeated elements: {a, b, c} is a set of three elements and {a, b, b, ¢}
is a multiset of four elements, with three distinct elements. We use a * to
distinguish multiset operators from set operators, so that {a,d} U* {b,c} =
{a,b,b,c} and it is false that {a,b,b,c} C* {a,b,c}. The repeated elements
of a multiset are said to be of the same type or indistinguishable from one
another.

Definition. Token Systems. Given a set of processes S = {S;, S,
..., Sp} and a|mutual exclusion problem on § expressed as a collection
E ={E,E,, ..\, E:} of mutually excluding subsets of S, a token system for
(S, E) consists of a multiset T = {t),15,...,tm} of (not necessarily distinct)
tokens together with a set {T1,T5,...,T.} of multisets, one for each S;, such
that each T; C* T and such that a subset {S,,Ss,...,S.} of S contains no
mutually excluding set if and only if 7, U* T, U*.. . U* T, C* T.

" Informally, there is a bowl of tokens ¢;, some of which may be indistin-
guishable from one another; and each process has a list (multiset) of tokens
it must obtain from the bowl before in can enter its critical section. If a set
of processes all take the tokens they want from the bowl, they can all
proceed at the same time; if there are not enough tokens of some type in the
bowl, they cann

t.

For a large collection of mutual exclusion problems, see [1]. For another

2




illustration of the way processes may pass tokens to one another, see [7]. For

more on the need for multisets, see [9].

A very simple way of administering a bowl of tokens, if they are indis-
tiguishable from one another, is by the use of semaphore operations. In
many distributed algorithms, the tokens are never pl “in a bowl” but
are passed from one process to another. The bowl abstraction is exactly-
that, an abstraction to simplify the presentation. To that end, in this paper
we ignore the question of how the tokens are “removed from the bowl”. We
merely consider the question of how many tokens may be needed. Our object
is to state a mutual exclusion problem which is not obviously intractable (in
fact, which is easy to solve using another means of communication) and for
which the smallest token system requires a number of tokens exponential in
the size of the problem.

2 The Excluded Taxpayer Problem

The name of this problem is suggested by the Washington, D.C., joke, Don’t
taz you, don’t taz me, taz the fellow behind the tree. Suppose we have a
legislature containing n members, each of whom represents one of k interest
groups. If at least one representative of each interest group is present at
a meeting, the debate will be interminable and no tax plan can be passed.
However, if all representatives of interest group ¢ are absent, the members
present can agree to tax group ¢. The mutual exclusion problem is to ensure
that no legislator enters the room (no process enters it critical section) if

Assuming that k divides n and exactly n/k members represent each group,
we denote representative 7 from group j by R;;. (For concreteness, consider
n = 300 and k = 100, with 3 representatives for each of 100 interest groups.)
Process R;; may enter the meeting (its critical section) if and only if there
is some t, t # j, such that no R, is present. Clearly, the minimal mutually
excluding sets consist of exactly k¥ members, one from e: ch group.

Section 3 gives a shared-variable algorithm enforcing mutual exclusion
which is linear in space and sublinear in time. Section 4 shows that any
token system to enforce this mutual exclusion will involve exponentially many

3




tokens. In fact, with n members evenly divided into k groups, any minimal
token system has (k — 1)(n/k)* tokens.

for n/k marks, and a place for noting the number of groups
ntative is already present. Each legislator, before entering
the legislative chamber, checks the chalkboard. If a member of her group is
in, she adds her mark in the appropriate row and goes in. If no member
of her group is iin, she checks to be sure that at least one other group is
unrepresented and then adds her mark, increments the number of groups
represented, and goes in. If hers is the only group unrepresented, she must
go away and try later. On exiting the chamber, any legislator must erase one
mark from her group’s row and decrement the count of groups if she was the
only representative of her group present.

Here is a more formal description of the algorithm executed by each pro-
.100,: = 1...3. This algorithm uses integer shared

n,or test it for being zero, in time log n)

(blank space to allow algorithm to start on next page)




Algorithm: Excluded Taxpayer, with shared me
Global integer N initally 0; { number of groups represented }
Global array A[1..100] of 0..3 initially all 0;

Begin process Rfj,i]:

Local boolean E { TRUE if process may enter }
{ entry protocol }
repeat

Lock(N, A); { guarantees unique access to data }

if A[j] > 0 then begin A[j] := A[j] + 1; E := TRUE; end

else if N < 99 then

begin N := N +1; A[j]:=1; E := TRUE; end

else E := FALSE; {must wait and t

Unlock(N, A);
until £;

{ ezit protocol }
Lock(N, A)
Alj] = Alj] - L
if A[fj]=0then N :=N —1;
exit;
Unlock(N, A)
End.

4 The need for exponentially many tokens

The minimal mutually excluding sets in the Excluded Taxpayer problem
are precisely the sets of k processes, one from each interest group. There
are (n/k)* such sets. Our goal in this section is to determine the size of
a token system necessary to enforce mutual exclusion using tokens. First,
we construct a token system that will clearly do the job. For each of the
(n/k)* sets just described, create k — 1 tokens, for a total of (k — )(n/k)*
tokens. These form a multiset: the k— 1 tokens for a given minimal mutually

excluding set are indistinguishable from one another,
from the tokens for any other minimal mutually excludi

5

but distinguishable
g set (for example,



subscript each token with the name of the set that caused its creation.) Each
process R(j,i] will demand a set (not a multiset!) of tokens T;; in order to
enter its critical section: this will include one of the tokens for each minimal
mutually excluding set of which R[j,i] is a member.

Observation: The token system just described will enforce mutual exclusion
for the Excluded Taxpayer Problem.

The proof is immediate: Any minimal mutually excluding set consists of
k members competing for k — 1 tokens. So at most ¥ — 1 members of the
set can enter at a time, and the mutual exclusion condition will never be
violated. Conversely, given any set of processes not containing a minimal
mutually excluding set, at most ¥ — 1 want any given type of token, and
k — 1 copies of each type of token are available.

We must now prove that no token system with fewer than (k — 1)(n/k)*
tokens can enforce this mutual exclusion. We will use the notation of hyper-
graphs (see [2]) and of threshold graphs (see (3, 6, 10]), rather loosely, but
will give the necessary terminology and lemmas here.

* Definition. Hypergraphs. A hypergraph consists of a set of points called
vertices and a collection of non-empty sets of vertices called hyperedges. A
vertex is called isolated if it is in no hyperedge. In this paper we will consider
the edge set of a hypergraph to be upward-closed, i.e., any superset of a
hyperedge is a hyperedge.

Definition. Threshold Hypergraphs. A hypergraph H is called a
threshold hypergraph if there is an integer ¢ called the threshold separator
and an integer label ¢, associated with each vertex v, such that a subset of
the vertices of H form a hyperedge if and only if the sum of their labels is
greater than ¢. All our threshold hypergraphs will have all labels positive
and no isolated vertices.

Definition. Subhypergraphs and Coverings. If H is a hypergraph
and J is a hypergraph such that every vertex of J is a vertex of H and every
hyperedge of J is a hyperedge of H, then J is called a subhypergraph of #-
If H* = {H,,...,H,} is a collection of subhypergraphs of H such that every
hyperedge of H contains a hyperedge of some H;, then H* is a hypergraph
covering of H. also every H; is a threshold hypergraph, then H* is a
threshold hypergnaph covering of H.




* of an H, consists of processes wanting more than ¢ copies

Now, given a set of processes, a mutual exclusion problem, and a token
system, we construct a hypergraph and a threshold hypergraph covering as

follows: The vertices of the hypergraph are the processes

and the hyperedges

are the mutually excluding sets of processes (the minimal hyperedges are the
minimal mutually excluding sets of processes). For each type of token v in
the token set T, consider the subhypergraph H, of H which has as vertices
those processes wanting one or more copies of token type v to enter their
critical section; label each such vertex with the number of copies of v it
wants; for the threshold separator ¢ of H, take the number of copies of v in
the set T. We will disregard any token types v that do not ever exclude a
process from its critical section, so every vertex of H, is a member of at least

one hyperedge of H,.

Lemma 4.1 In the system just described, the H, form a threshold hyper-

graph covering of the hypergraph H.

PROOF:. Clearly each H, is a threshold hypergraph; furt

her, each hyperedge
of vand T has only

t copies, so they form a mutually excluding set of processes (and a hyperedge
of H). To see that any mutually excluding set of processes of H contains a
hyperedge of some H,,, suppose that some mutually excluding set of processes
U = {S.,...,S.} does not. This means that for every type of element v of

T, the processes in U together need no more copies of

v than occur in T

But in that case, they can all obtain the tokens they need, and all of them

can enter their critical sections at once.

Hence, given a mutual exclusion problem and a tok

]

en system that will

enforce that mutual exclusion, there is a threshold hypergraph covering of the

underlying mutual exclusion hypergraph. The converse
also. Given a covering of a mutual exclusion hypergrap
hypergraphs, construct a token system as follows: for eal
pergraph V create t tokens of a single type denotéd V,
of subhypergraph V whose label is s let the correspondi:
copies of token V to enter its critical section. This esta
correspondence between token types and threshold subh
the following:

construction works
h by threshold sub-
ch threshold subhy-
and for each vertex
ng process require 8
blishes a one-to-one
ypergraphs, proving




Theorem 4.2 The minimum number of types of token required to solve a
mutual exclusion problem is equal to the minimum number of subhypergraphs
in a threshold hypergraph covering of the mutual ezclusion hypergraph.

Similarly, con
hypergraph and
pergraphs; this sum equals the number of tokens. Analogous to the above,
we have:

ider a threshold hypergraph covering of a mutual exclusion

Theorem 4.3 The number of tokens (counting duplicates) needed to solve
a mutual exclusion problem is equal to the minimum sum of the threshold
separators of the graphs in a threshold hypergraph covering of the mutual
ezclusion hypergraph (taken over all such threshold hypergraph coverings).

In general, finding minimal threshold subhypergraph coverings is highly
intractable (it is even NP-complete to determine if a graph can be covered
by two threshold graphs [4]). However, for the Excluded Taxpayer Problem,
the structure of the threshold hypergraphs which are subhypergraphs of the
given hypergraph are particularly simple.

Hereafter we let £ denote the mutual exclusion hypergraph of the Ex-
cluded Taxpayer Problem. The minimal hyperedges of this hypergraph are
precisely the k-vertex sets with one element from each interest group; thus
all. minimal hyperedges have exactly k vertices and there are (n/k)* such
hyperedges. We now set out to characterize the subhypergraphs of £ which
are threshold hypergraphs.

Lemma 4.4 Let F be a subhypergraph of the Excluded Tazpayer hypergraph
€ and suppose F is a threshold hypergraph. Then there is at most one interest
group 3 such that F contains more than one of the processes R;; for i =
1,...,n/k.

PROOF: Suppose (by relabelling as needed) that interest groups 1 and 2
each have at least two members which are vertices of hyperedges in F: choose
the two from each with the largest labels and call them R, ,, Ri2, Rz, and

nsider the sum of the threshold separators of the subhy-



* n representatives evenly divided into k groups) requires

R, 2. Suppose (in the threshold labelling) that R;; has label r;; and suppose
that ry; > ri2 and ryy > rp; > r22. Since F has no isolated vertices and all
its minimal hyperedges contain representatives of all interest groups, there
are vertices forming minimal hyperedges containing each of these four ver-
tices; in particular there is a hyperedge of the form {Ry 2, Ra., Ra, ..., Rig}
for some ¢, f,...,g in 1,...,n/k. This set of vertices has label sum ex-
ceeding t. Therefore, so does the set R* = {Ry2,Ri1,Raz,...,Rig} since
ri1 > rop 2 r2.. However, R* is not a hyperedge of &, so it cannot be a
hyperedge of F; it contains no representative of group 2, This contradiction
shows that if F' is a threshold hypergraph and a subgraph of £, it cannot
meet two interest groups in two or more vertices each. a

Thus we see that a threshold subhypergraph of £ includes at most all
n/k representatives of one interest group and exactly one representative of
each other interest group. Thus it includes at most n/k distinct minimal
hyperedges of £. Since £ has (n/k)* minimal hyperedges, this proves:

Theorem 4.5 Any token system for the Ezcluded Tazj»ayer Problem (with
t least (n/k)F! dis-
tinct types of tokens.

To see that the above number can be attained, and determine the sum of
the threshold separators, we must examine the structure (and labelling) of
the threshold subhypergraphs of £ in more detail.

Lemma 4.6 Let F be a threshold subhypergraph of £ and suppose F contains
p vertices from interest group number q (and one vertez from each of the other
k — 1 interest groups). The smallest labels that will produce this are: 1 for
each vertez of F in group q and p for each vertex of F autside group q, with
a threshold separator of t = p(k —1).

PROOF: Since all vertex labels in a threshold hypergraph are at least 1,
the vertices in group ¢ must have label at least 1. Let m # ¢ and suppose
that the following processes of F' are in their critical sections: all those from
group ¢ and one from each other group except m (This is possible as this
set contains no process from group m). Now suppose p — 1 processes from

9



group ¢ exit their critical sections, returning their tokens (at least p — 1)
to the pool. It is still not possible for the process in group m to enter its
critical section (one process from group g is still there) so that process must
require more than p — 1 tokens to enter. Hence each process of F outside
group q requires at least p tokens. But since all k— 1 processes outside group
g can enter their critical sections at once, there must be at least p(k — 1)
tokens available. Finally, with this labelling, it is easy to check that any
k — 1 vertices outside group ¢, or up to p vertices from group qand k-2
vertices from outside group ¢, have label sums not over p(k — 1), but any
larger subset of " has label sum exceeding p(k — 1) (and represents a set of
processes containing a miminal mutually excluding set). o

This result has a surprising corollary: a threshold subhypergraph F of £
has a threshold separator of at least p(k — 1) provided it contains at least P
minimal hyperedges of £. But that is exactly what we needed to show that
the originally constructed token system for the Excluded Taxpayer Problem
is minimal in the total number (although not in the number of types) of
tokens:

Theorem 4.7 Any token system for the Excluded Tazpayer Problem (with
n representatives evenly divided into k groups) requires at least (k — 1)(n/k)*
tokens.

5 Open questions

We have shown that token-passing is in some cases substantially less efficient
than using shared-variable algorithms for enforcing mutual exclusion.

There are a number of algorithms in the literature for managing token-
passing, many of which also consider fairness, deadlock, and other consid-
erations beyond mutual exclusion. Most of these assume that the processes
are competing for a single token (simple mutual exclusion), for single copies
of a single type of token (the k-of-n entry problem, e.g. [7, 12]), or form a
system modeled by a graph rather than a hypergraph [5]. In [11] a method
is given to formalize the “bowl of tokens” entry algorithm discussed in this
paper to guarantee freedom from deadlock and bounded waiting time, for

10



an arbitrary mutual exclusion problem, using only semaphores (that is, P
and V operations) as the programming tools. Since this method may, how-
ever, lead to exponentially long waiting times, there is much room for finding
better mutual exclusion algorithms for even the case of a threshold hyper-
graph (one token type with different processes wanting different numbers of
tokens), as well as for mutual exclusion problems modelled by more general
hypergraphs. )

Very little is known about threshold hypergraphs. While the theory of
threshold graphs is fairly well developed, the lack even of simple characteriza-
tions or recognition algorithms for threshold hypergraphs makes using them
difficult. For example, in [8] the author showed that for mutual exclusion
graphs, the smallest token system had a number of tokens equal to the clique
covering number of the graph. This depended on the fact that the threshold
separator of a graph is at least equal to its clique covering number. The most
direct extension to threshold hypergraphs fails; can anything be salvaged?
Can a threshold hypergraph be recognized in NP time? Are there interesting
classes of hypergraphs for which minimal token systems|can be found?

References

[1] G. Andrews, “Concurrent Programming: Principles and Practice”,
Benjamin/Cummings, Redwood City, Ca., 1991.

['2]‘C. Berge, “Graphs and Hypergraphs” , North-Holland Publishing Com-
pany, New York, 1973.

[3] V. Chvatal and P. Hammer, Aggregation of inequa
gramming, Ann. Discrete Math. 1 (1977), 145-162.

[4] M. B. Cozzens and R. Liebowitz, Threshold dimension of graphs, SIAM
J. Algebraic Discrete Methods 5(1984), 579-595.

ities in integer pro-

[5] E. W. Dijkstra, Solution of a problem in concurrent programming control,
Comm. ACM 8(1965), 569.

[6] P. Henderson and Y. Zalcstein, A graph theoretic clIracteﬁzation of the
PV chunk class of synchronizing primitives, SIAM J. Comp. 6 (1977), 88-108.

11




[7] M. Naimi, Distributed algorithm for K-entries to a critical section based
on the directed graphs, Operating Systems Review, 27(October 1993).

(8] E. T. Ordman, Threshold coverings and resource allocation, Proc. 16th
Southeastern International Conf. on Graph Theory, Combinatorics, and Com-
puting, Congr. Numer. 49(1985), 99-113.

[9] E. T. Ordman, Cligues in hypergraphs and mutual ezclusion using tokens,
J. Combinatorial Mathematics and Combinatorial Computing 19(1995), 29-
224.

(10] E. T. Ordman, Minimal threshold separators and memory requirements
for synchronization, SIAM J. Computing 18(1989), 152-165.

(11] E. T. Ordman, E. Eberbach, A. Anwar, Mutual ezclusion with semaphores
only, in preparation.

[12] P. K. Srimani and R. L. N. Reddy, Another distributed algorithm for
multiple entries to a critical section, Inform. Process. Lett. 41(1992), 51-57.

12




