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On Functions Defined by Iterations of Each Other?)

J. D. BEckER and E. T. ORDMAN (Cambridge, Massachusetts, U.S.A. and Lexington,
Kentucky, U.S.A.)

1. Introduction

Let f and g be functions from and into the nonnegative integers, and let iteration
of a function be denoted by superscripting (so that f2(n)=f (n)=f(f (n))). We
shall prove

THEOREM. The pairs (f, g) of functions satisfying
fm+1(n)=g"+1(m)’ 0<m,n<w 6))

are precisely those given by
n+1 for n<k
fn)=g(m)=qa for n=k )

a; for n>k, n=i(modp)

where —1<k< o0 and (if k<o) p, a, a; are integers satisfying 1<p<o0, 1Zi=<p,
a,a;>k, a=k+1 (modp) and a;=i+1 (modp).
From this it follows that

COROLLARY. The function f satisfies

f(n)=f""1(0), n>0 A3)
if and only if f satisfies (2).

Proof of Corollary. If f is as in (2), the pair (f, f ) satisfies (1) by the theorem and
(3) is the special case m=0. Conversely, if f satisfies (3), we can define g=fto give
S m)=f"f (n)=f"f"*"(0)=g"¢g""*(0)=g"g(m)=g""* (m). Then, since (f,g)
satisfies (1), f must be as in (2).

The problem and many of the proofs may be pictured in terms of an array {am,n}
of integers with a,, ,=f""*(n)=g"*!(m). The crucial fact in this interpretation is
that a number such as f2(0)=f2f(0)=ff2(0) appears in each of the positions
az,0, 41,50y and g, 2 (0)-

In figures 1, 2, and 3, f (n) is directly to the right of, and g(n) directly above, each
occurrence of n.

1) This work was done at the National Bureau of Standards, Washington, D.C.
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6 6|7 6|5
5 5414657 514 5
415 415 6 7 415 4 5
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0_1 23456 7... 0|56 7 056 7 0. 0|1 23835435 4505
0123 45 6.. 0123 456 7.. 0123456 7..
k = oo, p undefined k=—1,p=4 k=3,p=2
Figure 1 Figure 2 Figure 3
2. Proof that (2) implies (1)
Let a,,, be given by
m+n+1 for m+n<k
Apn=10 for m+n=k ()
a; for m+n>k, m+n=i(modp)

where the parameters are defined since f and g satisfy (2). We shall show that
f™*1(n)=a,, ,; g=f by hypothesis and clearly a,, ,=a,,, so it Will follow that
fm(n)=a,, ,=f"**(m)=g"*" (m) completing the proof.

Formulae (2) and (4) make clear that a, ,=f (n); we shall prove a,,,=f m*1(n)
by induction on m, by showing that for all m, n, (@, n) =0pm+1,n There are four cases,
for m+n respectively less than k—1, equal to k—1, equal to k, and greater than k.
All are elementary; we illustrate with m +n=k. In this case a,,,,=4a, so f (@m,n)=f (a)
=a, where i=a=k+1 (modp). However, d,,,=a; wWhere i= (m+1)+n=k+1
(mOdp)a By f (am,n) =qm+1,n

3. Proof that (1) implies (2)

LEMMA 1. g"f"(n)=f"(m+n)
Proof. Using (1) twice, g"f" (n)=g"g"** (r—1)=g"*"*!(r—1)=f"(m+n).

LEMMA 2. There are integers k, —1<k< 0, and (if k<o) p, 1 Sp<co, such
that the values f(0), ..., f (k) are assumed by f only at the points 0, ..., k respectively,
and such that for all r>0,f(k+r)= f (k+r+p), while the valuesf (k+1),..., f (k+p)
are distinct.

Proof. If fis one-one, then k = co. If not, let k be the least integer such that f(k+1)
is the image of more than one point, and let p>0 be the least integer for which
f(k+1+p)=f(k+1). Then, using Lemma 1 twice, f(k+r)=g"~'f(k+1)=
¢ " f(k+1+p)=f(k+r+p) for all r>0. To show that f(k+1),..., f(k+p) are dis-
tinct, suppose that k+1<m<n<k+p and f(m)=f(n). Again, using Lemma 1 twice,
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fe+1)=f(k+1+p) =gt 1 *P="f (n) =g**1*P="f (m)=f (k+1+(p+m—n)); but,
since p+m—n<p, this contradicts the choice of p as the least period.

That is, fis one-one on the segment {0, ..., k} and periodic with period p thereafter;
the cases where the segment is null or infinite correspond to k=—1 and k=00
respectively. To establish (2) it now suffices to show that f (n)=n+1 for n<k; that
f(n)=n+1 (modp) and f (n)>k for n>k; and that g(n)=f () for all n.

LEMMA 3. If f (m)=f (n), then m=n (modp). If in addition m<k or n<k, then
m=n.

Proof. If m and n are each greater than k, they must differ by a multiple of the
period since the values in the period are distinct. If m<k, f (m) is a value assumed
only at the point m, so n=m.

LEMMA 4. f"*1(0)=f (nf (0)).
Proof. Thisis clearly true for n=0; suppose it is true for some 7. Then by Lemma 1,

f(m+1)+1 (0) - fm+1 (f(O)) = gf(O)fm+1 (0)
= g" /(s (0)) = 1(mf(0) + £(0)) = /((m + 1) £(0)),

completing the induction.

PROPOSITION 1. If k+# o then f (n)=n+1 (modp).
Proof. By Lemma 1, formula (1), and Lemma 4, f (n+1)=gf (n)=f7/™*1(0)=
S (f(n):£(0)); by Lemma 3,

n+1= f(n)-£(0) (modp). )
Lemma 1 also yields ff' (n) =g"ff (0)=f (£ (0) +n), so by Lemma 3,
f(n)=f(0)+n (modp). (6)

Combining these, f (n)—f (0)+1=n+1=f (n)-f (0) (modp); rearranging, f (n)+1=
=/(0)-(f () +1) (modp). By (6), there is an 7 such that 1 (n) + 1 is relatively prime to
p; thus we may divide by f(n)+1 to get (0)=1 (modp) and f (n)=n+1 (modp)
for all n.

PROPOSITION 2. If n<k, then f (n)=n+1.

Proof. Where n<k (including the case k =c0) the proof of Proposition 1 holds
with congruences replaced by equality. (5) holds since n<k implies 7 +1=<k; then (5)
implies f (n) <k so (6) holds, by Lemma 3. In this case (5) implies f (0) = 1 immediately,
since f(0) is nonnegative by hypothesis.
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PROPOSITION 3. f(n)>k for n>k.

Proof . If k>0, f never assumes the value 0. If it did, f(r)=0 would imply
S(r+1)=gf (r)=g(0)=f(0) would be the image of more than one point, and k
would equal —1. If k>0, f assumes the values 1, 2,..., k at 0, 1,..., k—1 and only
there. Thus at all other points, f (n)>k.

PROPOSITION 4. g(n)=f (n) for all n.

Proof. Since (f, g) satisfies (1), g(n)=f"**(0). But we have shown that f satisfies
(2), so (f,f) satisfies (1) and thus /** (0)=f(n). Thus g(n)=(n) and the proof that
(1) implies (2) is complete.
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