aequationes mathematicae

On Functions Defined by Iterations of Each Other¹)

J. D. BECKER and E. T. ORDMAN (Cambridge, Massachusetts, U.S.A. and Lexington, Kentucky, U.S.A.)

1. Introduction

Let f and g be functions from and into the nonnegative integers, and let iteration of a function be denoted by superscripting (so that $f^2(n) = f(f(n))$). We shall prove

THEOREM. The pairs (f, g) of functions satisfying

$$f^{m+1}(n) = g^{n+1}(m), \quad 0 \le m, n < \infty$$
 (1)

are precisely those given by

$$f(n) = g(n) = \begin{cases} n+1 & \text{for } n < k \\ a & \text{for } n = k \\ a_i & \text{for } n > k, \ n \equiv i \pmod{p} \end{cases}$$
 (2)

where $-1 \le k \le \infty$ and (if $k < \infty$) p, a, a_i are integers satisfying $1 \le p < \infty$, $1 \le i \le p$, a, $a_i > k$, $a = k + 1 \pmod{p}$ and $a_i = i + 1 \pmod{p}$.

From this it follows that

COROLLARY. The function f satisfies

$$f(n) = f^{n+1}(0), \quad n \geqslant 0$$
 (3)

if and only if f satisfies (2).

Proof of Corollary. If f is as in (2), the pair (f, f) satisfies (1) by the theorem and (3) is the special case m=0. Conversely, if f satisfies (3), we can define g=f to give $f^{m+1}(n)=f^mf(n)=f^mf^{n+1}(0)=g^ng^{m+1}(0)=g^ng(m)=g^{n+1}(m)$. Then, since (f,g) satisfies (1), f must be as in (2).

The problem and many of the proofs may be pictured in terms of an array $\{a_{m,n}\}$ of integers with $a_{m,n} = f^{m+1}(n) = g^{n+1}(m)$. The crucial fact in this interpretation is that a number such as $f^3(0) = f^2 f(0) = f f^2(0)$ appears in each of the positions $a_{2,0}, a_{1,f(0)}$, and $a_{0,f^2(0)}$.

In figures 1, 2, and 3, f(n) is directly to the right of, and g(n) directly above, each occurrence of n.

¹⁾ This work was done at the National Bureau of Standards, Washington, D.C.

2. Proof that (2) implies (1)

Let $a_{m,n}$ be given by

$$a_{m,n} = \begin{cases} m+n+1 & \text{for } m+n < k \\ a & \text{for } m+n = k \\ a_i & \text{for } m+n > k, \ m+n \equiv i \ (\text{mod } p) \end{cases}$$
 (4)

where the parameters are defined since f and g satisfy (2). We shall show that $f^{m+1}(n) = a_{m,n}$; g = f by hypothesis and clearly $a_{m,n} = a_{n,m}$, so it will follow that $f^{m+1}(n) = a_{n,m} = f^{n+1}(m) = g^{n+1}(m)$ completing the proof.

Formulae (2) and (4) make clear that $a_{0,n} = f(n)$; we shall prove $a_{m,n} = f^{m+1}(n)$ by induction on m, by showing that for all m, n, $f(a_{m,n}) = a_{m+1,n}$. There are four cases, for m+n respectively less than k-1, equal to k-1, equal to k, and greater than k. All are elementary; we illustrate with m+n=k. In this case $a_{m,n}=a$, so $f(a_{m,n})=f(a)=a_i$ where $i\equiv a\equiv k+1\pmod{p}$. However, $a_{m+1,n}=a_i$ where $i\equiv (m+1)+n=k+1\pmod{p}$, so $f(a_{m,n})=a_{m+1,n}$.

3. Proof that (1) implies (2)

LEMMA 1.
$$g^m f^r(n) = f^r(m+n)$$

Proof. Using (1) twice, $g^m f^r(n) = g^m g^{n+1}(r-1) = g^{m+n+1}(r-1) = f^r(m+n)$.

LEMMA 2. There are integers k, $-1 \le k \le \infty$, and (if $k < \infty$) p, $1 \le p < \infty$, such that the values f(0), ..., f(k) are assumed by f only at the points 0, ..., k respectively, and such that for all r > 0, f(k+r) = f(k+r+p), while the values f(k+1), ..., f(k+p) are distinct.

Proof. If f is one-one, then $k = \infty$. If not, let k be the least integer such that f(k+1) is the image of more than one point, and let p > 0 be the least integer for which f(k+1+p)=f(k+1). Then, using Lemma 1 twice, $f(k+r)=g^{r-1}f(k+1)=g^{r-1}f(k+1+p)=f(k+r+p)$ for all r>0. To show that $f(k+1), \ldots, f(k+p)$ are distinct, suppose that $k+1 \le m < n \le k+p$ and f(m)=f(n). Again, using Lemma 1 twice,

 $f(k+1)=f(k+1+p)=g^{k+1+p-n}f(n)=g^{k+1+p-n}f(m)=f(k+1+(p+m-n));$ but, since p+m-n < p, this contradicts the choice of p as the least period.

That is, f is one-one on the segment $\{0, ..., k\}$ and periodic with period p thereafter; the cases where the segment is null or infinite correspond to k=-1 and $k=\infty$ respectively. To establish (2) it now suffices to show that f(n)=n+1 for n < k; that $f(n) \equiv n+1 \pmod{p}$ and f(n) > k for $n \ge k$; and that g(n) = f(n) for all n.

LEMMA 3. If f(m)=f(n), then $m \equiv n \pmod{p}$. If in addition $m \leq k$ or $n \leq k$, then m=n.

Proof. If m and n are each greater than k, they must differ by a multiple of the period since the values in the period are distinct. If $m \le k$, f(m) is a value assumed only at the point m, so n=m.

LEMMA 4. $f^{n+1}(0) = f(nf(0))$.

Proof. This is clearly true for n=0; suppose it is true for some m. Then by Lemma 1,

$$f^{(m+1)+1}(0) = f^{m+1}(f(0)) = g^{f(0)}f^{m+1}(0)$$

= $g^{f(0)}f(mf(0)) = f(mf(0) + f(0)) = f((m+1)f(0)),$

completing the induction.

PROPOSITION 1. If $k \neq \infty$ then $f(n) \equiv n+1 \pmod{p}$.

Proof. By Lemma 1, formula (1), and Lemma 4, $f(n+1) = gf(n) = f^{f(n)+1}(0) = f(f(n) \cdot f(0))$; by Lemma 3,

$$n+1 \equiv f(n) \cdot f(0) \pmod{p}. \tag{5}$$

Lemma 1 also yields $ff(n) = g^n ff(0) = f(f(0) + n)$, so by Lemma 3,

$$f(n) \equiv f(0) + n \pmod{p}. \tag{6}$$

Combining these, $f(n)-f(0)+1 \equiv n+1 \equiv f(n) \cdot f(0) \pmod{p}$; rearranging, $f(n)+1 \equiv f(0) \cdot (f(n)+1) \pmod{p}$. By (6), there is an n such that f(n)+1 is relatively prime to p; thus we may divide by f(n)+1 to get $f(0)\equiv 1 \pmod{p}$ and $f(n)\equiv n+1 \pmod{p}$ for all n.

PROPOSITION 2. If n < k, then f(n) = n + 1.

Proof. Where n < k (including the case $k = \infty$) the proof of Proposition 1 holds with congruences replaced by equality. (5) holds since n < k implies $n + 1 \le k$; then (5) implies $f(n) \le k$ so (6) holds, by Lemma 3. In this case (5) implies f(0) = 1 immediately, since f(0) is nonnegative by hypothesis.

PROPOSITION 3. f(n) > k for $n \ge k$.

Proof. If $k \ge 0$, f never assumes the value 0. If it did, f(r) = 0 would imply f(r+1) = gf(r) = g(0) = f(0) would be the image of more than one point, and k would equal -1. If k > 0, f assumes the values 1, 2, ..., k at 0, 1, ..., k - 1 and only there. Thus at all other points, f(n) > k.

PROPOSITION 4. g(n) = f(n) for all n.

Proof. Since (f, g) satisfies $(1), g(n) = f^{n+1}(0)$. But we have shown that f satisfies (2), so (f, f) satisfies (1) and thus $f^{n+1}(0) = f(n)$. Thus g(n) = f(n) and the proof that (1) implies (2) is complete.

Stanford University and University of Kentucky