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CONVERGENCE AND ABSTRACT SPACES
IN FUNCTIONAL ANALYSIS!

Edward T. Ordman

4. LINEARITY AND METRIZABILITY.

4.1. DEFINITIONS AND REMARKS. We now introduce the notions of linear
limit and topological spaces and largely restrict consideration to such spaces.
We shall introduce one metrizability standard, quoting some essential steps of
the proof from Kelly since they are not especially relevant to our approach here.

In the following, X will ordinarily be a linear space (vector space) OVer a
scalar field R (usually the real or complex numbers). Limit structures (or top-
ologies may be assigned to X and to R, thus leading to limit structures Or top-
ologies on X x X and R x X. The space (X,C;R,D) (usually denoted (X,C) or sim-
ply X) will be called a Linean space with Limit stweture if there is no essen-
tial connection between the linear and limit structures. It will be called a
Linearn Limit (topological, etc.) 4pace if and only if in addition to having a
limit (topological, etc.) structure it has the property that F(x,y) = x + y and

G(a,x) = ax are continuous functions from X x X and R x X respectively into (X,C).

4.2. THEOREM. Let (X,C;R,D) be a Linear space with Limit stwetuwre. 1L
i a Linearn Rimit space if and onky Lf a, > a(D), xg¢ > x(C), and Yg + y(©)
Amply that eXp * Vg ax + y(C).

(Recall from 1.1 the convention on multiple subscripts in a net.)

If ag >~ a and Xg > X, (ae,xf) ~ (a,x) in R x X and by continuity of
G:R x X » X, agXe * ax. Similarly for x + y.

To show F continuous, let (xf,yg) > xy in X x X. By projection, Xg ~ X

and yg > y. By hypothesis, Xxg + Yg + x + y; hence F is continous. G is similar.

4.3. THEOREM. Let (X,C;R,D) be a Linear space with a ot countabﬂe.?l
sthuctune (4.e. such that X and R are firnst-countable .Tl-épac%). Then X 44 a
Linear 7, -space if fon okl sequences a > a, X * X, and y, ~ y, we have that
apX, + yp T ax * y(C).

The condition is clearly implied by that for nets above; we must show that

in a first countable J&—space it is equivalent. Let a, > a(D), and so on, and

lThis is part 2 of a two-part paper. Part 1 appeared in Volume 1, Number 2,
(September, 1969), pp. 78—96.
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26 ORDMAN

examine aexf + Yg-
Xe(d) > X and yg(d) > y, each through a system of neighborhoods which has a

For every subnet %e(d)X£(d) * Yg(a) We have de(d) > &

countable base. Suppose the bases to be enumerated; then we may find a d(n)

such that a, = ae(d(n)) 1s in the nth neighborhood of a, x_ in the nth neigh-

borhood of x, Y in the nth neighborhood of y. Hence ay cznverges to a and
similarly for x and y, so by hypothesis a,x, *y, converges to ax + y. It fol-
lows (even though 2e(d(n)) is not a subnet of ae(d), only a sequence with small-
er range) that ae(d)xf(d) + yg(d) is at least once in each neighborhood of ax + y.
But if agXp ¥ yg were frequently outside any neighborhood, a subnet could be
found which would be always outside; thus aXp * yg must fail to be frequently
outside any neighborhood, that is, it must eventually be in each neighborhood

and converge. We have now established the hypothesis of 4.2, so the theorem

follows.

4.4. REMARKS. It is clear that if the initial spaces are topological,
the product limit spaces have the product topology, continuity reduces to top-
ological continuity, and the linear space is a linear topological space. How-
ever, a much stronger result holds. We shall show in 4.9 that whenever X is a
linear J}—space then X is automatically a linear topological space. This will
be done through the introduction of uniform spaces, which are useful in giving
a metrizability standard: a first countable uniform space is metrizable. No-
tions of bounded sets and local boundedness are introduced since they provide
a net-definable sufficient condition for metrizability and necessary condition
for normability. P;ior to developing this machinery, we introduce a simple

example.

4.5. EXAMPLE. Convergence pointwise. Let (X,p) be the space of func-
tions from the reals (or [0,1] if you prefer) into the reals with convergence
pointwise: fd converges to f (pointwise) if and only if for every (x,r) where
x is real and r is positive, eventually |f(x) - fd(x)' < r. This is thus
clearly a J&-sapce; an argument that it is topological is omitted and will in
fact follow from later results. Linearity of convergence (4.2) holds since it
holds pointwisé. The space is, however, not first countable. Let g be a func-
tion with value 1 on the rationals, 0 on the irrationals. It is everywhere
discontinuous and thus not a limit of a sequence of continuous functions (see
€.g., Boas). On the other hand, it is in the closure of the set of all con-
tinuous functions. Let D be the collection of finite subsets S of the reals,
and fg equal g on the set S and anything continuos elsewhere (for instance,

polygonal). Then {fg,D,D} + g (pointwise). It follows that (X,p) is not a
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sequential space, and thus not first countable.

4.6. DEFINITION. A base for a wuniformity for a set X is nonvoid col-
lection % of subsets of X x X such that:
(a) each U in % contains (x,x) for all x in X, (b) if U is in %, % contains a
subset of UL = {(x,y): (y,x) € U}, (c¢) for U there is some V in % such that
VeoVs= {(x,z): there exists y with (y,z),(x,y) € V} < U, and (d) the intersec-

tion of two members of % contains a member of .

4.7. SUMMARY OF STANDARD RESULTS. We shall use without proof many pro-
perties of uniform spaces, readily available in, e.g., Kelly or Bourbaki. For
U in %, U(x) is the collection of y such that (x,y) is in U; U(x) contains x
and may be regarded as a neighborhood. The resultant space is a topological
space due to (c) above; a set is open if and only if it contains some U(x) for
each x in it. This topology is called the uniform topology. A unifoum topol-
ogy is T, if it is T;, which is equivalent to requiring the intersection of all
sets in % to be exactly the diagonal (the collection of pairs (x,x)). The
space is first countable if % may be chosen to be countable. We will accept
the theorem (6.13, Kelley, General Topology) that any first-countable uniform
space is pseudo-metrizable (metrizable if T;). The hard work having been avoid-
ed, the following is proven largely to illustrate these concepts. We then go on

to show that a linear 7, -space is uniform.

4.8. THEOREM. Any metrnic space L4 unifornmizable and finst-countable.

Clearly open neighborhoods are provided by open spheres; we find a count-
able basis by picking spheres with rational radii (or simply spheres of radius
1/n for each n). To find a basis for a uniformity, Let U, be the set of pairs
(x,y) such that d(x,y) < r and let % be the collection of U, for, say, rational
r. (a), (b), and (d) of 4.6 are apparent; (c) follows from the triangle ine-
quality upon letting the "radius" r of V be half that of U. Finally, it is
clear that the notion of convergence (in this case, the topology) generated by
the uniform structure is the same as that generated by the metric. We remark
also that the space is T, since d(x,y) = 0 implies x = y; if x and y were dis-

tinct and d(x,y) = 0, (x,y) would be in every Uy and y in each Ur(x).

4.9. THEOREM. Let X be a Linear 7 -space. Then Lt 48 uniform (hence
topological by 4.7 and thus a Linear topological space).

For each neighborhood U(0) we define the set U* = {(x,y): y - x € U},
and let % be the collection of sets U* for all U in some base for a neighbor-

hood system at 0. We now establish that ¥ is a base for a uniformity.
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(a) 0 is in U, so (x,x) is in U*; (b) scalar multiplication is continuous, in
particular f(x) = -x is continuous and for each U there is a neighborhood V with
-1 -VcuUu, i.e. -1 + V¥ cU*; (c¢) f(a,b) = a + b is continuous on X x X; £(0,0)
equals 0. By 3.5 there is a neighborhood Uy of (0,0) such that f(UI) c U. Call
a basis neighborhood contained in Ul’ Vl x V2, and let V = V1 n V2. Then V + V
is contained in U. Suppose (x,y), (y,z) are in V*; (y - x) and (z - y) are in V,
their sum (z - x) in U, and (x,z) in U*; (d) let U* and V* be given; let W be a
subset of U N V be another neighborhood of 0. If (x,y) is in W*, y - x is in W,
U and V, so (x,y) is in both U* and V*. We must now show that convergence in the
uniform topology is the same as the original convergence; this is immediately
true at 0 since the neighborhoods are the same, and true at other points by trans-
lation since the space is linear.

For clarification, we now prove that this space actually is topological.
Let U be a neighborhood of 0 and let N be the collection of x such that some
V*(x) — U; N contains some neighborhood of each of its points and is thus an open
neighborhood of 0. To see this let x be in N, V*(x) < U, and W* o W* C V¥*. For
every y in W*(x), W*(y) c W*(W*(x)) € V*(x) C U so y is in N; thus N contains a
neighborhood W*(x) for each x in N. The same argument holds about points other

than 0, so the open neighborhoods form a base and the space is topological by 2.12.

4.10. EXAMPLE. This proves that pointwise convergence (4.5), since linear

j}, is linear topological. However, since it is not first countable, it is not

metrizable.
4,11. DEFINITIONS. Let (X,C;R,D) be a linear space with limit structure,
R the real or complex numbers. A subset A of X is bounded if for each sequence
{x,} in A and each sequence a; ~ 0 of real positive scalars, a x - 0(C). In
particular, if X is a linear limit space, each singleton is bounded. (anx-+ Ox = 0.)
Now let X be a linear limit space. It is Locally bounded if and only if each
convergent net is eventually in some bounded set. If there is a bounded open set,
some translate of it covers every point so the space is locally bounded (similarly

if some point has a bounded neighborhood). This proves also the first half of the

following Theorem.

4.12. THEOREM. A Linearn J space 45 Locally bounded Lif and only L§ each
pseudo-neighborhood system contains a bounded pseudo-neighborhood. |

"If" is immediate. If some point x has a pseudo-neighborhood system con-
taining no bounded set, the net having that system as its associated filter (1.3c)

would converge to x but fail to be in any bounded set, contradicting local bound-

edness.
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4.13. COROLLARY. A Linear topological space is Locally bounded if and
only Aif there 48 a bounded open seft.

Zero has a bounded neighborhood which has an open subneighborhood.

4.14. THEOREM. Let X be a Linear space with 7, stwcture. A subset A of
X 44 bounded if and only if each neighborhood U of 0 contains some (1/n)A.

Suppose some U fails to contain such a set; each (1/n)A contains a point
(1/n)xn not in U. X, is a sequence in A, 1/n > 0, but xn/n remains outside U
and cannot converge to 0, so A is unbounded. Conversely, if a, = 0, anA is event-

ually in each U so for any sequence x, in A, ax, ~ 0(C).

4.15. THEOREM. Let X be a Linear topological space and be Locally bounded.
Then £t 45 firnst countable and hence metrizable.

By 4.12 we may choose a bounded neighborhood of 0, say U. By 4.14 each
neighborhood contains sone (1/n)U; we must show each (1/n)U contains a neighbor-
hood V of 0. £(x) = nx is a continuous function and f(0) = 0 so by 3.5 there is
a neighborhood V for each n such that nVv c U, i.e., V< (1/n)U. Thus the sets

(1/n)U form a countable base for the neighborhood system.

4.16. EXAMPLE. Convergence in measure. Suppose we let X be the space of
measurable functions from the interval [0,1] into the reals with functions equal
a.e. identified. Now for each function f in X and positive rational number r,
define Nr(f) = {g: u{x: |f(x) - g(x)| > r} < r}. We say that a net fd converges
to f (measure) if and only if fj is eventually in each Nr(f). Clearly (X,measure)
is a first-countable J,-space; we shall now show that it is a linear limit space
and thus metrizable. First, suppose f, > f and g, ~ g; |fn(x) + g, (x) - £(x) - g(x)|
is less than Ifn(x) - f(x)| + |gn(x) - g(x)l SO fn + g, converges to £ + g. If
fn + 0, clearly afn ~ 0 for any constant a; if aj - 0 and £, - 0, a, <1 event-
ually and clearly anfn - 0. If a, 0 and f is some element of X, anf + 0 since
anf + 0 (pointwise).

(Note that it is essential that X consist of functions defined on a bounded
interval. The real-real function f(x) = x satisfies f(x)/n not in Nl(x) for any
n and cannot belong to any linear limit space of convergence in measure. Equi-
valently, {f} is unbounded which is impossible in a linear limit space.)

We now have that if a > a, fn -~ f, then anfn - af = (f, - f)(an - a) +
an(fn - f) + f(an - a) > 0. Thus by Theorem 4.3, (X,measure) is a first-count-
able J,-space, and hence topological and metrizable.

It is of interest that (X,measure) is not locally bounded. Suppose we con-

sider the set of ordered pairs (m,n) ordered by first elements, and set f(m,n)(x)
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equal to n for x in [0,1/m] and zero elsewhere. The net f eventually differs

from zero only on an arbitrarily small interval, so it converges to zero. On

the other hand, any set which f(m n) is eventually in contains all points of
b

the form f(m 1 for some m. While 1/n > 0, (1/n)f # 0 and does

= f
) (m,n (m, 1)
not converge to zero, so by definition 4.11 (X,measure) is not locally bounded.
This assures us that there is no bounded open set without even requiring us to

explicitly determine the topology.

4,17. EXAMPLES. Convergence pointwise and almost everywhere. In 2.18
we defined the linear Ja—space of almost everywhere convergence, (X,a.e.), and
in 4.5 the linear topological space of convergence pointwise (X,p.). We noted
in 4.5 that (X,p.) was not first-countable, so it is not locally bounded and
not metrizable; it is clear that the same results hold for (X,a.e.) (it is ob-
viously nonmetrizable, since nontopological, and the example of 4.5 may be mod-
ified to show non-first countability). The net f(m,n) also shows non-local
boundedness for (X,a.e.) and for (X,p.) (with modification to let each f

be 0).

y (0)

(m,n

5. LOCAL CONVEXITY AND NORMABILITY.

The first part of this section discusses local convexity, a property often
desired in linear spaces but apparently difficult to handle in terms of conver-
gence. The second part gives Kolmogorov's normability standard, as a logical
followup to convexity and boundedness notions; much of it is taken from Taylor,

3.3 - 4.1.

5.1. DEFINITIONS. In the following X will be a linear space over the real
or complex numbers. The segment between points a and b of X is the collection
of points of form na + mb, where n and m are non-negative and sum to 1. A set
is convex if and only if it contains the segment between any two of its points;
clearly an arbitrary intersection of convex sets is convex. The convex hutt
A, of a subset A of X is the smallest convex set containing A, that is, the

intersection of all convex sets containing A.

5.2. LEMMA. Let T be the collection of points x = a;X] + ayXy +ottodapx
where n 44 anbitrany and finite, each X) Ab An A, each a, 44 nonnegative, and
the a, sun to 1. Then T 44 the convex hutl of A.

T is clearly convex and contains A; we must show any convex superset of A
contains T. The superset contains points of form ajx; + azx,, and thus points

of form bl(alx1 + azxz) + byxz, where bl + by =1 and hence blal + blaz + b2 = 1.
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By induction on n, the superset contains each point of T.

5.3. THEOREM. 1§ X 44 a Linear Limit space and A L5 open, A, A5 open.

If x is in Ac it is of form ajx; + apXy; + **° + X, where a; is non-
zero. By linearity a;A + apxp + =°* *+ apX, is an open set, containing X and
contained in A.. Thus A. contains an open set about each of its points, and

is open.

5.4. LEMMA. 1§ A 4is convex and a and b are real and positive, then
aA + bA = (a + b)A.

Clearly (a + b)A is a subset of aA + bA. If Xy, X, are in A and y = axj +
bx,, y/(a + b) = axy/(a + b) + bxz/(a + b) which is in A; thus y is in (a + b)A.

5.5. DEFINITIONS. Just as local boundedness requires that '""neighborhoods
eventually be bounded," local convexity will require neighborhoods to be convex.
While nets do not lend themselves easily to convexity restrictions, the follow-
ing rather artificial construction will suffice for our purposes. A net will
be called convex if each basis set of its associated filter is convex; we wish
to define a sort of "convex hull' for nets. Suppose f is a net on domain D; we
will construct a convex huff g as follows: Let E be the class of triples (d,P,Q)
where d is in D, P is an n-tuple (for some finite n) of points of D all of which
follow d, and Q is an n-tuple of nonnegative fractions whose sum is one. Now let
the points of E be ordered by their first elements, and let g(d,P,Q) = alfl +
apfy + o0+ anfn where ay, fk are the kth elements of Q and P respectively.

Then g is a net whose associated filter base consists of convex sets, the convex
hulls of the sets in the filter generated by f.

We now define a linear space with limit structure to be Locally convex if
and only if whenever any net f converges, its convex hull g also converges. This
definition is actually a bit bulky for showing that a space is locally convex; it

is quite useful in establishing counterexamples.

5 6. THEOREM. Let X be a Zinear J space. Then X 44 Locakly convex i and
only if each pseudo-neighborhood system contacns a (coarsen) pseudo-neighborhood
system which has a basis consisting of convex sets.

Suppose first the second condition holds and f converges to x, through a
pseudo-neighborhood system .. There is a system s, 2a subset of &, which has a
basis consisting of convex sets. f is eventually in each set of that basis
(since it is eventually in each set of & and each basis set is in %) and thus g
is eventually in each set of the basis and must converge. Thus X is locally

convex.
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Conversely, suppose the convergence of any f implies the convergence of
its convex hull g, and let & be any pseudo-neighborhood system. Then the net
whose associated filter in & converges, so its convex hull g converges. As
noted in 5.5, g has an associated filter base consisting of convex sets; call
the filter so generated .£*. Any net eventually in each set of 4* is in every
set that g is, and thus converges; that is, £* is a pseudo-neighborhood system
with a basis of convex sets. Finally, each set in .%* contains a set of & so

Z* 1is coarser than .2,

5.7. COROLLARY. Let X be a Linear topological space. Then X 4is Locally
convex Lf and only if each neighborhood contains a convex neighborhood.
In 5.6 there is now only one neighborhood system; it has a basis of con-

vex sets.

5.8. THEOREM. Let X be a Lineanr space with a Locally convex  sthucture
(that is, it need not be a Linear Limit space). Then the convex hull B_ 0
any bounded set B {8 also bounded.

We rely largely on the definition of ''bounded"; a sequence in B. will be

chosen, multiplied by a sequence a_, > 0 of scalars, and the resulting sequence

n
shown to be a subnet of the convex hull of a sequence constructed from points

of B. Suppose y, to be a sequence in Bc’ and let us examine a For each n

Y. .
n’n
there is an integer k(n), a k(n)-tuple Q, = (rl,rz,---,rk(n))n of nonnegative

reals summing to ﬁne and a kgnﬂiﬁ¥ple S, = (xl,xz,'°°,xk(n))n of points of B

(n
such that y, = (Ziz riX;)y = Zi=l ri,nxi,n’ any, = 2 Ty ,n?n%i,n Let us now
change notation, letting bj n = e for j =1, 2, +++, k(n) and then letting
¢y = bl,l’ Cy = b2,1’ see ck(l) = bk(l)’ Ck(l) f1 = b2,1’ *++ and so on, ef-

fectively putting the a, in a new sequence where a, is repeated k(n) times. Now

z is b1 n and thus

me1s Zpen ., Zm+k(n)) where Cnel ,
Smik(n) = bk(n) n» and the z's are to be defined. The sequence of scalars <

let Pn be the k(n)-tuple (z

converges to zero since aj does. Choose a sequence z of points of B by letting
Zp = X4,

by the boundedness of B, the sequence c,z, converges to zero and so does its

convex hull g(n,P,Q) (where notation is as in 5.5). Let hn = g(n,Pn,Qn); h is

where Ch = b1 0’ i.e., order the x's in the same way as the b's. Now
>

then a subset of g and since defined on the natural numbers it is a sequence;

since X is an # space, h converges to zero. However, h_ = g(n,P ,Qn) =
k(n) . n n
=% T

b} . . X, =T Thus we see that
i,n 1,n 1,n

a.

X, = a
n"i,n

T. C .2 . . .
j=1 i,n m+i"m+i i,n n’n

a,y, converges to zero, and B, is bounded.
The complexity of this proof is due to the lack of strong restrictions on

the space X; in a locally convex linear topological space, the theorem is almost
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immediate from 4.14 and 5.7. This proof has been included primarily to show
that local convexity may imply nontrivial results even in spaces so weak that
they have no '"meighborhoods" (or even pseudo-neighborhoods) to be convex. That

the result is actually non-trivial is shown by the first example of 5.9.

5.9. EXAMPLES. (a) We shall give a space X which is linear, has an unre-
lated J} structure, but fails to be locally convex, which has a bounded set
whose convex hull is unbounded. Let X be the complex plane, nets converge to
non-zero points if and only if eventually constant, and let a net converge to
zero if and only if (1) it converges in the Euclidean metric and (2) it is event-
ually in the axes (i.e. beyond some point each term is either real or imaginary,
although terms of both sorts are allowed.) This is clearly a J; convergence and
fails to be locally convex (since no neighborhood of zero is convex). Now if B
is the set consisting of the points 1 and i, it is clear that B is bounded; but
its convex hull contains the point 1/2(1 + i), which yields a nonconvergent se-
quence when multiplied into any positive real sequence a - 0.

(b) Convergence pointwise and almost everywhere. These convergences are
enough related that we need prove local convexity only for the first. It is
clear that the set of functions which differ from f by less than r at the point
X is convex; thus the neighborhoods (which are finite intersections of such sets
for varying x and r) are convex and by 5.7 the space is locally convex.

(c) Convergence in measure. Convergence in measure, shown in 4.16 not to
be locally bounded, is also not locally convex. Suppose D to be the class of
ordered pairs (n,m) with n natural and m an integer from 1 to n, with D ordered
by first elements. Let f(n,m) be n on the interval [m - 1/n, m/n] and zero else-

where in [0,1]. Clearly f > 0 (measure). Now let us consider the convex

(n,m)
hull of the net f. No matter how far out we go, the net still contains all of

. 3 " 1"
the functions f y for some n, and hence their "average f(n,l)/n + f(n,2)/n +

(n,m

oo + = f(l,l)' Since the convex hull frequently has the value f(l,l)

/n
(n,n)
it clearly cannot converge to 0, and (X,measure) is not locally convex.

5.10. DEFINITIONS. We now turn to the problem of whether the topology of
a linear topological space is equivalent to that generated by a norm. A noam
||x]| on a space X is a function from the linear space into the non-negative
reals such that (a) ||x + y|| < ||x|| + ||y]|; (b) if a is a scalar (i.e. real

Ix||; (¢) if ||x|| = 0, then x = 0. A norm which

or complex) ||ax|| = |a
fails to satisfy (c) is a pseudo-noxm.
A balanced (equilibre, star-like, etc.) set is a set A such that if |a] <1

then aA < A. Notice that a set may be balanced over the real numbers but fail
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to be balanced over the complex numbers, so in some cases the scalar field
must be carefully noted. The balanced hull Ay of A is the intersection of all

balanced sets containing A; then Ay = UaA for ]al 1.

fin

5.11. THEOREM. (a) Every notmed space L5 metrizabfe. (b) Every normed
space L8 Locally convex and Locally bounded.

(a) In a normed space, the distance between any two points x and y is
||x - yl|; this is clearly a metric and is the ordinary way of defining the
topology in a normed space. (b) It follows from 5.10(a) and (b) that the unit
sphere is convex and bounded; hence a small scalar multiple of it (equivalently,
a small sphere) is a convex subneighborhood of each neighborhood of zero (and
by translation, of any other point). (In fact, a space is locally convex and

locally bounded if and only if there is a bounded open convex set.)

5.12. LEMMA. TIf A {8 balanced then the convex hull A_ of A is balanced.
If xis in A, x = I a;X; as in 5.3. For la] <1, ax = g a; (ax;) which

is in Ac since each axj is in A.

5.13. THEOREM. Lef U be a convex neighborhood of 0 4in the Linear Zopo-
Logical space X; then U contains a convex balanced neighborhood of 0.

Let U1 =UN -1<U and U2 = 1/2-U1 and thus U1 and U, are convex and in
fact balanced with respect to the reals; we proceed to the more difficult com-
plex case. By continuity of multiplication by i we may find an open neighbor-
hood Vy of zero, smaller than Up, such that i-Vl and thus v u i-V1 c Up. Let
V be the convex hull of the balanced hull of Vy; by 5.3, 5.12, and the fact
that the balanced hull is a union of scalar multiple of the original (open) set,
V is convex, balanced, and open; we must show V < U. Let x be in the balanced
hull of Vis then for some a + bi of absolute value less than or equal to 1,

x is in (a + bi)V) < aVy + biV; < 1/2aU; + 1/2bU; = (a + D) (U;/2). But a? + b?
is less than or equal 1, so |a + b| < 2 and x is in U; and thus in U. Since

the balanced hull of V1 is a subset of the convex set U, V must also be a subset.

5.14. DEFINITIONS. A set K is absorbing if 0 is in K and for each x in X
there is a positive real r such that |a] > r implies x in aK. It has been re-
marked that any neighborhood of zero is absorbing (this is equivalent to the
assertion that each singleton is bounded). Any convex absorbing set may be used
as an "approximate unit sphere" to define an "approximate norm': the M{nkowsk(

gunctional p(x) of an absorbing set K is p(x) ={inf a: a > 0, x in ak}.

5.15. THEOREM. Let K be convex and absosnbing. Then: (a) p(0) = 0,
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(b) p(x + y) < p(x) + p(y), (o) A§ K 45 balanced (real on complex) then

p(ax) = |a|p(x) (for real ox complex a, respectively), (d) if K is open,

K= {x: p(x) <1}, and (e) 4§ K 48 bounded and X a T, space, p(x) = 0 implies
x = 0.

(a) 0 is in aK for every a; (b) let x be in aK, y in bK; x + y is then in
ak + bK = (a + b)K, so p(x + y) £ a + b for every such a and b and thus we have
p(x +y) <p(x) + p(y); (¢) if a = 0, apply (a). Otherwise, if x is in bK then
(a/|alb)x is in K, hence ax is in |albK, p(ax) < |alb and thus p(ax) < |a|p(x).
Substituting a'x' for x and 1/a' for a, p(a'x') ;:Ia'lp(x'); (d) clearly if
p(x) <1, x is in 1+K = K, so x is in a~1K and p(x) < a~1l < 1; (e) if x is not
0 there is a balanced neighborhood U of 0 not containing x. Since K is bounded
there is a scalar b > 0 with bK U; if x is in aK < (a/b)U then a/b > 1, a > b,

so p(x) >~b > 0.

>.16. THEOREM. A Linear %opokogical space is pseudo-normable A4 therne 45
a bounded convex neighborhood of 0; normable 44 also T,.

Let U be the given neighborhood; there is an open subneighborhood K that
is also balanced and, since a neighborhood, absorbing. 5.15(a), (b), (¢), (e)
show that p is a pseudo-norm. The topology generated by this norm is the same
as the original since K is a bounded open set in each topology 5.15(d) and hence

the sets (1/n)K form a base for the neighborhood system at 0 in each topology.

5.17. EXAMPLE. The simpliest normed space commonly referred to is the
space of bounded real-real functions, with HLEl] = sup|f|. It is clear that

the resultant convergence is exactly uniform convergence of functions.

5.18. DEFINITIONS. We now turn briefly to another aspect of local con-
vexity which may be of interest. Let X be a linear space over the real or com-
plex numbers: the convex coxe convergence (c) is determined by letting fq > £(c)

if and only if fd - f is eventually in each absorbing, balanced, convex set.

5.19. THEOREM. (X,c) 48 a Locally convex Linear Lopokogical space.

It is clear that (X,c) is a.JH space; denote the collection of absorbing
balanced convex sets, the neighborhood basis at 0, by .2. Clearly any nonzero
scalar multiple of a set of £ is again in %, and eah U in £ is convex so
(1/2)U + (1/2)U = U by 5.4, If fq and g converge to 0 each is eventually in (1/2)U
and f3 + g5 ~ 0(c). For multiplication, suppose aq > 0 and £, > 0(c). Then
agf > 0 since each U is absorbing; af, >~ 0 since fo is eventually in (1/a)U.
Eventually |ay| < 1 and since each U is balanced agfe > 0. Thus if ay and f,

converge to a and f respectively, a,f - af = (a; - a)(f, - £) + a(f, - £) +
p dve d e e
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f(ad - a) > 0(c). Translation of limits is trivial; thus by 4.2 and 4.9, (X,c)
is a linear topological space (this structure is also called the convex coie
topology for X). Also, (X,c) is locally convex because each neighborhood con-

tains a convex neighborhood.

5.20. THEOREM. Let (X,c) be the convex core convergence on X and d anothen
convengence forn which (X,d) 48 a Locally convex Linear topological space. Then
c 45 finen than d, L.e., has fewer convergent nets (see 3.1, 3.2).

Let A be open in (X,d) with 0 in A. Then there is a convex N open in (X,d)
with 0 in N C A, and an open U C N which is convex, balanced, and absorbing;
thus U contains a neighborhood of 0 from (X,c). Hence any net which converges
in (X,c) to 0 must also converge in (X,d) and the result follows similarly for

other points.
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