An Arcade Game Using Character Graphics

Edward T. Ordman

Recently the university for which I work purchased several
IBM Personal Computers, and I set about learning how they
work. I was familiar with the Apple and TRS-80, so I wanted to
check a few new features of the IBM Basic and learn my way
around the keyboard and extended character set.

Since our new computers came without the Color/Graphics
interface or game paddles/joysticks, a reasonable first project
was to determine if an arcade-type game could be constructed
using only the keyboard and charact:r graphics on the 25-line
by 80-character one-color monitor. The result was surprisingly
good, and may be of interest not only to other users of the IBM
Personal Computer, but to those with character rather than
graphics output in general.

Real life programming jobs are seldom either bottom-up or
top-down programming exclusively; one alternates as the program
evolves. I started with a bottom-up approach, learning how to
do a few things at a time on the new machine.

Elements of Character Graphics

First: could I place a mark wherever I wanted on the screen?
Yes, and quite easily.

CLS clears the top 24 lines of the screen. It turns out that the
25th line is separate and normally displays descriptions of the
ten “programmable function keys.” It takes a separate command,
KEY OFF, to clear the 25th line.

I decided to display the game in the top 24 lines, and use the
25th for a score display, instructions and the like.

Once the screen is clear, positioning is easy: the command
LOCATE Y,X places the cursorin row Y (1 to 25) and column
X (1to 80). Notice that the Y axis is oriented downward in this
notation. Now LOCATE Y, X:PRINT C$; will put the character
C$ at position X of row Y.

The Basic program crashesif X or Y is out of range, so that is
worth testing for, and the computer scrolls if you try to write in
the bottom right-hand corner (X=80, Y=24 or Y=25)s0 a
writing routine should protect against that.

Edward T. Ordman, Department of Mathematical Sciences, Memphis
State University, Memphis, TN 38152.

178

We now have a reasonably well-developed point-placing

subroutine:

330 REM PUT THE CHARACTER C$ AT X(OVER),
Y(DOWN)

340 IF X<1 OR X>80 OR Y<{I OR YD>24 THEN
RETURN

350IFX =80 AND Y =24 THEN X = 79

360 LOCATE Y,X : PRINT CS$;

370 RETURN

Of course, the tests in lines 340-350 can be eliminated if the

program tests those conditions before calling the subroutine.

On my way up from the bottom, I asked: can I draw a line?

Recalling my analytic geometry, here is a first draft of a way to

draw a line from X1,Y1 to X2,Y2, marking each point with

character C$:

39 REM DRAW A LINEFROM X1,Y1 TO X2,Y2. ASSUME

Y2DY1

400FORY =Y1ltoY2

410 X = (X2-X1)/(Y2-Y1) *(Y-Y]) + X1

420 GOSUB 330

430 NEXT Y

440 RETURN

A quick experiment reveals that that does not work
satisfactorily; X is rarely an integer. Adding 415 X = INT(X +
.5) helps, but the loop is still much slower than it should be; we
are doing unnecessary repeated calculations during the loop.
Here is a better version:

390 REM DRAW A LINE FROM X1,Y! TO X2,Y2 WITH

Y2 Y1

400 SO = (X2-X1)/(Y2-Y1): $=X1-SO

410FORY=Y1 TO Y2

420S = S+SO : X = INT(S + .5) : GOSUB 330

430 NEXTY

440 RETURN
This version makes fewer calculations inside the loop.

We could have another version of this program in case
Y1=Y2, interchanging X and Y throughout, and maybe even
a test for whether ABS(X1-X2) > ABS(Y1-Y2): do we want a
line moving nearly horizontally to showas XXX XXX

XXX

oras X

X x 9

Since the latter will give faster motion, I settled for it. On that
basis, the routine just given will plot any descending line.

August 1982 © Creative Computing

144
elc
L]

* Gr
* 10
seek
frictic
NEC
Dot |

Pri

910
92t
950

Ee——

O

Anad
C.lto:
C.lto:
C. Ito!

Meteor, continued...

These commands gnd details particular to the IBM Personal
Computer are provided so that users of other microcomputers
can substitute as may be required by their systems:

Table 1.
CLS Clear Screen. This applies only to lines

1 - 24 unless KEY OFF is in effect.
KEY OFF, Turns off and on the line 25 display of
KEY ON meanings of the 10 programmable keys.
LOCATE A.B Moves the cursor to line A (range 1-25),

position B (range 1-80).

Returns an integer: the number of the
character presently appearing at line A,
position B, on the screen.

SCREEN(A ,B)

STRINGS(N,K) Returns a character string N characters
long, each character is character number

SOUNDFB Sounds the speaker, frequency F, for
duration B units.

INKEYS The one or two character long character

string denoting the most recently pushed

key, or the empty string if no key has

been pushed since it was last referenced.
RANDOMIZE N Restart random number sequence, based
on the seed N. An unpredictable N may
be obtained by extracting substrings from
TIMES.
The clock time since the system was
booted up, as a character string, of the
form 02-25-14 for 2 hours, 25 minutes, 14
seconds. May be reset to actual time, if
desired.

TIME$

Screen Characters used:

2 Bright Face (1 is Dark Face)

25 Down arrow, ¥

219 Full box (all white if writing white on
black)

178 Shaded box (grey, if writing white on
black)

Kéyboard Characters used:

13 Enter, often called carriage return.
Denoted ¢ on key.

32 Space or blank

0-77 Cursor right returns a two-character string,
CHR$(0)+CHRS(77)

0-75 Cursor left

0-72 Cursor up

0-80 Cursor down

0-83 DEL (Delete)

0-82 INS (Insert)

A Top-Down Approach

With those subroutines in hand. I soon had a slow shower
of characters falling down my CRT screen. A game began to
take shape in my mind.

A Note On RANDOMIZE

IBM Personal Computer Basic will produce the same
sequence of random numbers each time unless you use the
command RANDOMIZE. You must provide a “seed,” or
starting value, in the range -32767 to 32767. Of course, you
would like that seed to be unpredictable, and if possible
different almost every time you start. Here are two methods:

e In this game there is a keyboard input called for very
early: DO YOU WANT DIRECTIONS?In the loop at lines
160-170, we repeatedly test (using INKEY$) to see if the Y,
N, or Enter key has been struck. The variable R is incremented
each time we go around that loop, and kept in the range 0 to
32003 by the MOD (modular arithmetic) addition. Thus the
seed in RANDOMIZE R depends on how quickly the user
pressed the key.

¢ A somewhat easier method is available in Disk Basic or
Advanced Basic, since these have the keyword TIMES.
One and a half minutes after the computer has been turned
on, if the user has not reset it, this variable has the value “00-
01-30" (No hours, one minute, thirty seconds). We can
convert it to a number and use it as a seed by a command
such as RANDOMIZE VALMID$(TIMES$,7,2)+MID$
(TIMES,4,2)).This will produce RANDOMIZE 3001 at the
just-mentioned time after startup. While this method is
certainly easier than the first method, I have included the
first method in the listing since the second method is
unavailable in cassette Basic.

Trial Program Outline (Version 1)

1. Clear screen.

2. Create a marker showing where the “player” is.

3. Periodically have objects falling from the top of the screen.

4. Give the player a way to move his marker, to dodge the
falling objects.

5. Turn ends when the player’s marker is hit by a falling object.

This was not entirely satisfactory. It would be far more
satisfactory if there were something the player could do {other
than simply survive) to score points.

Basic character graphics run a bit slowly to allow shooting
sorts of games, which I don't really like very much anyway. 1
decided instead to try letting the player marker move through
a path or obstacle course, or gather points when it got to
certain targets.

Program Outline (Version 2)

1. Clear screen; position player marker.
2. Create targets on screen.
3. Choose a path for a falling “meteor.”
4. Each time the meteor falls one position:
5. If it hits the player marker, go to step 13 (end of turn).
6. Erase old meteor position, mark new one.
7. Does player want to move his marker? (Read keyboard)
If he does:
8. If new position is occupied, perform step 12 (score).
9. Erase old position, mark new one.
10. If meteor has further to fall, go to step 4.
11. Return to step 3.

12. (Score) Depending on the target hit, increment score.
display score on the screen, make a noise: return to main
program.

13. (Player is hit). Sound a noise. Draw explosion. Await input
to decide whether to play again (go to step 1) or exit program.

August 1982 © Creative Computing

Moeteor, continued...

_ METEDR! (CURSORS MOVE &)

KETEOR! (CURSORS MOVE &)

METEOR! (CURSORS MOVE &)

9 KEYS:
Early in the game.
P Pl
o b
Eo s
o '
T o
P oot
i :. '
-
b ' i !
! ! ot
IR
{ ‘
y
1346

1345

DEL = FINISH,

INS = PLAY AGAIN

End— A Meteor has hit the player.

INS=CONTINUE, DEL=STOP, ENTER=RESTORE

KEYS: INS=CONTINUE, DEL=GTOP, ENTER=RESTORE

Well into the game —many of the targets have been erased.

Here are some pictures showing the game Meteor being
plaved. The plctutes were made using an Epson MX- 80
punter which requires a somewhat different character set
than is used on the CRT screen. The meteor trails are
shown here as short vertical marks () and the plavers
position is marked with a #.

METEOR

A SIMPLE ARCADE GAME UBSING CHARACTER BRAPHICS.

THE CURBOR CONTROL KEYS S8TART THE & SYMBOL MOVING,

ANY LETTER (AND BOME OTHER KEYB) MILL STOP CURBUR MOTION.
BEE IF YOU CAN ERASE THE SOLID BLOCKS BEFORE A FALLING METEOR HITB YOU.
EACH ! YOU ERASE BCORES 10 POINTS, EACH | 2 POINTS.
YOU LI 1 POINT FOR EACH [A METEOR HITB.
TO HIT YOU A METEOR NEEDS TO BET WITHIN THE SHADED AREA:
mmaan
LY T
-

SOME EXTRA INSTRUCTIONS WILL BE ON THE BOTTOM LINE

HOM HARD (1-9)?

The directions as shown on the screen (symbols altered
for printer).

Converting Graphics -
for Printer Output

1 have an unmodified Epson MX-80 printer. Its graphics
characters are in many ways better suited to the TRS-80
than to the IBM Personal Computer. Still, I wanted to print
enough to show what the screen looked like while playing
the game. Accordingly, to make the screen pnmouts prov:ded
with this article, I did the followmg “

For the characters used in the program, I substituted
characters that would have a similar general visual effect
on the Epson printer. This involved changing lines 120, 140,
370,700, and 710. The substitutions I made were as follows:

For CHR$(2) (face) I used CHR$(35), that is, #. :

For CHR$(219) (solid square) I used CHR$(223), the
printer solid block.

For CHR$(25) (down arrow) 1 used CHR$(124) the vemcal
line

For CHR$(178) (shaded square) I used CHR$(61), the
equal sign =

Then I set the printer in compressed character (132
characters per line) mode to make the printed shape close
to the original screen shape. I ran the game, periodically
using the pause-on-space-bar feature of the game to halt
the action, and print out the screen using the buxlt-m Pnnt
Screen key. ‘o

182 August 1982 © Creative Computing

THE SPACE BAR BTOPS ALL ACTIDN TEMPORARILY, AND ALLOMS REBTORING TARBETS.

TR

4o

P

_— l H e e AN AT D D T T T PP T TP D TR TR o o T e e w o~~~ . I

Meteor, continued...

Built-In Machine Functions

1t is now clear that we need to know at least two more
functions: how to find out what is displayed at a point on the
screen. and how to detect keyboard input without waiting for
an INPUT statement.

The first function is easy: SCREEN(Y .X) is a built-in numeric
function which returns the number of the character present on
the screen in position X of line Y. (In some versions of Basic.
on other computers. this may take a PEEK or other technique.
In extreme cases—a computer talking to a very dumb terminal —it
may require keeping a copy of the screen in an array in
memory.)

The second is also easy: INKEYS is a reserved word whose
value is the key recently pressed. There is a slight complication.
however: on the IBM Personal Computer. some keys produce
a two-character value for INKEYS. For example. the Home
button produces CHRS(0)+CHRS(71) for INKEY'S.

From here on. it is largely a matter of picking specific
characters for attractive graphics. fine tuning. and “dressing
up” the game. The IBM Personal Computer provides a nice
range of graphics symbols. including two small faces. one of
which I selected for the player marker. and a downward arrow
which was ideal for a falling meteor.

To create more scoring activity, I deducted a point when a
meteor hit a target. and left meteor trails on the screen.
awarding points when the player erases them. I put in a pause
feature controlled by the space bar and a provision for restoring
the targets when they were all erased.

Survey of the Code

A listing of the program is provided in Listing 1. Since the
code. including directions and remarks. is under 100 lines. it
should be easy to alter. The relatively modular design makes it
easy to change into games having little superficial resemblance
to the one shown here. For example. changing lines 840-900
would rearrange the targets; an alteration in lines 280-310 or

D

“Might as well cancel your ad; today, all the pirating is done
electronically.”

Two Minor Nuisances

1 encountered two minor nuisances that 1 would regard
as slight criticisms of the hardware and software design for
the IBM Personal Computer.

¢ The cursor control keys double as the numeric keypad:
the Numeric Lock switch aiters their function. If you
accidentally strike this key during repeated ‘use of this
keypad. strange things happen. In the case of this game.
when you are striking cursor control keys repeatedly. hitting
Numeric Lock freezes the player marker on the board and
inhibits response to the cursor control keys. (This could be
overcome in the game design).

s When debugging. I frequently LIST a program and
stop the scrolling to read a portion of the listing: scrolling is
stopped on the IBM Personal Computer by Control-Numeric
Lock. Unfortunately, this can freeze the screen in the
middle of a single scroll, causing one line of the screen (the
one being rewritten) to contain false information about the
program contents. (The screen will regenerate, correcting
the error, if you try to exit the listing to fix the error.)

184

390-430 could change the character of motion of the attackers
or meteors. It would be quite easy to install obstacles. that is,
points through which the player marker, meteors. or both
could not pass; testing that the player marker is not hitting
such an obstacle would go in at around lines 700-720.

A description of the code. with references to the Program
Outline (Version 2} above, follows:

Line 120 clears the screen and initializes.

Line 150 offers directions. 1f wanted. GOSUB 930.

Line 180 randomizes. IBM Basic requires a seed: see box for
discussion.

Line 190 asks how hard it should be (move targets up or
down screen). Note: Hitting Enter alone causes defaults: no
directions. difficulty = 5.

Line 230 chooses starting location HX,HY for the player
marker.

Line 240 clears the screen (step 1 of outline).

Line 250 places instructions in the bottom line.

Line 260 uses GOSUB 840 to place targets on the screen
(step 2).

Lines 270-320 choose a path for the falling meteor (step 3.
11);: GOSUB 390 to actually plot the line.

Line 330 (subroutine) plots a point for the meteor: checks
for player marker hit and for keyboard input. If HS is not null,
but K$ is. continue player marker motion as before (step 5-6-
7).
Line 390 (subroutine) draws a line for the falling meteor. If
the meteor is below the player marker and cannot hit it.
terminate line (step 4).

In line 450. the player is hit by a meteor. The program waits
for the player to hit the INS(ert) key to restart. or the DEL(ete)
key to exit (step 13).

Lines 570-730 process requests for player marker movement
(step 8-9).

Line 740 increments score (step 12).

Line 760 processes pauses resulting from depression of space
bar. It offers choices of continuing, exiting program. restoring
targets.

Line 840 prints targets and places player marker on screen.

Line 930 gives directions. O

August 1982 © Creative Computing

A e

A i e

TR

S R B A B

7o) Sh

G

3585 ¢
90 ¢
406 ¢
Mof
4203
430 ¢
450 F
450 +
470 1
480 1
500 3
320t
530 k
S40 1
550 ¢
560 €
575 F
580 1
596 1
800 #
830 1
650
870 i
880 1
699 1
05
el
72 L
740 1
Tai L
7T
799 |
800 1
a0 ¢
546 7
8ol F
870 L
900 K
M0 L
920 £
930 R
946 C
950 F
960 F
9T F
35 P
98¢ F

990 F
395 F

1000

1016

1020 -
1038

1650

1060

Augus

kers
at is.
both
tting

rram

x for

p or

ayer

reen
p 3.
ccks
nuil.

5-6-

or. If
t .

VALLS
ctel

nent
race
ring
.

O

nputing

o iied

TG e

[i ST

sehde

Listing 1.

100 REN METEQR, 4 CHARACTER GRAPHICS ARCADE GANE

{10 REN BY EONARD T. ORDMAN NOVENEER 1981

120 MS=CHRS {2 :C8=CHRY: 219} (4=CHAS (25) :REW FACE, SOLID SOUARE.DONN ARRON
130 C34=C8sL8oT0+08+0h:H8="* T=0:REN BLOCK,LATCH FOR FACE NQTION, SCORE

140 =178:E28=8TRINGS42, ¥4 1ES8=STRINGS (3, 1) 1ERS=STRINGS (8, Y) 1 REN SHALING
130 CLS:KEY OFF:PRINT D0 YOU WANT DIRECTIONS (V/Ni7*:R=523:REM RANDOM SEED
160 RE=INKE7S: IF R$="7Y* THEN GOSUE 930:607T0 180

170 IF R3="N* OR R$=CHRS$(13) THEN 180 ECSE R=(ReSLI}NOD 32093:6070 160

180 RANDOMIIE R:REN SEED BASED N DELAY IN ANSHERING QUESTION

190 PRINT “HOW HERD (1-9)7%;

200 RS=INKEYS:C=ASCiR$+" "):1F C348 AND C(S8 THEN C=C-48:60T0 230

210 IF C=13 THEN C=5 ELSE 200

230 HE=20+INT(40SRND+1) :HY=15+INT (34RND+1} :REM POSITION FOR FACE

240 CLS:LOCATE 25, 1:PRINT "NETEGR! (CURSORS WOVE ";M5;*}°;

267 BOSUB 840 :REM PUT TARGETS,PLAYER MARKER

280 ¥1=1:¥2=24 :REN DESCRIBE METEDR PATH

290 X1=INTIRNLI80+1? : {2=INTIRNDIBG+1) :REM EACH IS INTEGER 1-8¢

310 B0SUS 390:6070 290:REM PLOT METEQR PATH, REPEAT

330 REM PLOT X8 AT Y,X CHECKING FOR SCORES, FACE KOTION

A0 KS=INKEYSIIF KSC35% THEN HS=KS:REM H$ 1S LATCH

350 IF LENINSI 20 THEN GOSUB 570 :REN KEY WAS STRUCK

350 IF ABS(X-HX)¢T AND ABS(Y-HY1(2 THEN 450 :REM FACE HIT

379 IF SCREEN(Y,1)=219 THEN C2=-1:50UND 660,2:605U8 740:REN TARGET HIT

375 IF Y=24 AND X=80 THEN X=79 :REM WRITING 24,80 CAUSES SCROLLING

380 LOCATE ¥, X :PRINT X8;:RETURN

390 REM DRAR A LINE FROM X1,V TO 12,2

490 50={X2-X1) 7 1¥2-11) :3=11-5)

410 FOR ¥=Y1 T ¥2; S=6+80: 1=INTL.54S)

420 IF ¥3Hi+] THEN RETURN:REM GIVE UP IF BELON TARGET

430 60SUB S30:NEXT ¥ sRETURN

450 REW TARBET IS HIT, POSITION MESSAGE

450 HX=HX-4:1F NX2T2 THEN HI=72

470 TF HY<1 THEN HX=1

486 IF HY=24 THEN HY=23

500 SOUND 400, 8:LOCATE HY,HX:PRINT E2%+"BANG"+E28;:LUCATE Hy+l,HX:PRINT E88;
520 LOCATE 25,35:PRINT * DEL = FINISH. INS = FLAY AGAIN ’

530 H$=INKEY$: IF HS=CHRS (G} 4CHRS (B3) THEN CLS:KEY ON:END

40 IF H$=CHRS (0} +CHRS (63) THEN CLS:KEY OM:END

550 IF H$=CHRS (0} +CHRS (B2) THEN CLS: FUN

560 80TE 530

70 REM FROCESS KEYBOARD REQUEST

580 IF HS=CHR$ (32} THEN 740:REM PAUSE ON SPACE BAR

590 IF LENiHS)=1 THEN H
400 HH=ASC (RIGHTS (HS, 1)) s 8=Hs:He=""; LOCATE HY.HI:PRINT * *
830 IF HH=T7 THEN Mi=HI+1:H$=K8$:IF HY 80 THEN HX=i

850 IF HH=75 THEN HX=HX-1:M$=K$:IF H)<1 THEN HE=80

670 IF HH=BO AND HY<2A THEK HY=HY+1:H$=K$

830 IF HH=72 AND HY31 THEN HY=Hi-1:H
690 IF HY=80 AND HY=24 THEN Hy=23
709 IF SCREEN(HY,HX}=219 THEN SOUND 440,1:C2=10:6OSUB 740

710 IF SCREEN{HY,HX)=25 THEN SOUND 420,1:C2=2:GOSUB 740

720 LOCATE HY,HY:PRINT M$;:RETURN

740 T=T+(2:LOCATE 25,27:PRINT T::RETURN:REM SCORE POINTS

760 LOCATE 25,35:PRINT "KEVS: INS<CONTINUE, DEL=STOP, ENTER=RESTORE °;
770 He=INKEYS: IF H$=CHRS (01 +CHRS (82 THEN 910

790 IF H3=CHES (13} THEN 840

800 IF H8=CHRS (0 +CHRS (B3} THEN CLS:KEY ON:END

816 5070 776
840 REX PUT THREETS A
8a0 FOR 1=12-C T0 24-
870 LOCATE 1,15:PRINT C3%::LOCATE I,35:FRINT C58::L0CATE 1,55:6RINT C54:
300 NEXT 1:LOCATE KY,H{:PRINT N$; .

210 LOCATE 25,35:PRINT * HIT SPACE BAR TO PAUSE "

326 RETURN
930 REN DIPECTIONS
94 CLS:PRINT:PRINT TAB(35); "HETEQR" :PRINT:PRINT
956 PRINT "A SIMPLE ARCADE GAME USING CHARACTER BRAPHICS.®
360 PRINT :PRINT *THE CURSOR CONTROL KEYS START THE ":M$:* SyMBOL MOVING.®
970 PRINT *THE SPACE BAR STOPS ALL ACTION TEMPORARILY, AND ALLONS °:
375 PRINT "RESTORING TARGETS.”
980 PRINT “ANv LETTER (AND SOME OTHER ¥EYS) WILL STOP CURSOR WOTION."

990 FRINT:PRINT *SEE IF ¥0L CAN ERASE THE SOLED BLOCKS BEFORE A FALLING *:
395 FRINT *NETEOR HITS 70U.*
1600 ERINT "EACH *:C8:* YDU ERASE SCORES 10 POINTS, EACH *;18;* 2 FOINTS.®
1017 PRINT "YOU LOSE t POINT FOR EACH “:Ci:* & METEQR HITS,*

1626 PRINT:PRINT "0 WIT YOU A METEOR NEEDS 7O GET WITHIN THE SHADED AREA: "
1035 PRINT:PRINT TAB(3T);ESS:PRINT TABI371:E28+Ns+E2

1030 PRINT TAB(37);E54:PRINT:PRINT
1360 PRINT *SOME EXTRA INSTRUCTIONS WILL BE ON THE BOTTOM LINE®:PRINT:RETURN

August 1982 ¢ Creative Computing

185

CIRCLE 181 ON READER SERVICE CARD

