
 

 
ONE AND ONE IS NOTHING: Liberating Mathematics
Author(s): EDWARD T. ORDMAN
Source: Soundings: An Interdisciplinary Journal, Vol. 56, No. 2 (Summer 1973), pp. 164-181
Published by: Penn State University Press
Stable URL: http://www.jstor.org/stable/41177879
Accessed: 28-02-2018 14:37 UTC

 
REFERENCES 
Linked references are available on JSTOR for this article:
http://www.jstor.org/stable/41177879?seq=1&cid=pdf-reference#references_tab_contents 
You may need to log in to JSTOR to access the linked references.

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

Penn State University Press is collaborating with JSTOR to digitize, preserve and extend
access to Soundings: An Interdisciplinary Journal

This content downloaded from 141.225.112.53 on Wed, 28 Feb 2018 14:37:45 UTC
All use subject to http://about.jstor.org/terms



 ONE AND ONE IS NOTHING:

 Liberating Mathematics

 EDWARD T. ORDMAN

 (and some scientists) tend to feel left
 out in the cold when they hear reports of adventurous

 teaching. I have never heard anyone discuss "mathematics and
 consciousness-raising"; I have not yet heard anyone claim that
 calculus courses should engage "the whole personality" of either
 student or teacher; and to date I have not had a colleague
 attempt to teach "Socratically" in the sense suggested by Rosalyn
 Sherman.* Yet if one maintains (as I do) that mathematics is
 a full-fledged member of the liberal arts, one ought to be able
 to argue that mathematics can be taught in a "liberating" fashion.
 I believe that this can be done, and note with some joy that
 mathematics departments in increasing numbers are experi-
 menting in this general direction. The purpose of this essay
 is to give some rather personal impressions of what mathematics
 is, of why mathematics is a liberal art, and of what sorts of
 things might go to make up a "liberating" mathematics course.
 While I will mention in passing several types of courses and

 teaching techniques, my principal interest will be in indicating
 some topics that might be included in a one- or two-semester
 course in "pure" mathematics designed for liberal arts students
 with no prior background in mathematics and no "practical"
 need for mathematics, e.g., as a prerequisite to their later

 Mr. Ordman teaches mathematics at the University of Kentucky. He is
 presently on sabbatical leave at the University of New South Wales, Sydney,
 Australia.

 * "Is It Possible to Teach Socratically?", Soundings, 53 (1970), pp. 225-245.
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 * At that period I was introduced to* a number of such people by one
 of the more prominent ones: the late Bishop Ian Ramsey. His book Religious
 Language (London and New York, 1957) shows a good deal of mathematical
 influence.
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 studies. I am in effect presupposing a traditional liberal arts
 curriculum and accepting that many of the students in such
 a course will be there because it is required for "diversification."
 I am not here advocating such a context, but simply accepting
 it as a common context with which we are all familiar. In fact,
 there may be a built-in advantage in discussing a proposed
 course in such a context. Many mathematicians feel - and my
 correspondence seems to confirm - that our nonmathematical
 colleagues have little idea of what mathematics is, what a
 mathematician does for research, or what mathematics is doing
 in the liberal arts. The general public seems to believe that
 mathematics is to a large degree concerned with numbers, while
 in fact most research mathematicians can pursue their work
 for many months without encountering any concrete number
 larger than two. The situation is further complicated when (as
 sometimes happens) a mathematician announces in a discussion
 that pure mathematics is clearly far closer to the fine arts, or
 even to the humanities, than to science. I hope that by actually
 discussing some specific pieces of mathematics that might go
 into a mathematics course for liberal arts students, I can cast
 some limited amount of light on these issues.

 I would like to insert a bit of personal background, by way
 of illuminating my purpose in thinking of such a course. When
 I was dangerously young I decided I wanted to become a college
 professor. Some years later the realization arrived that one must
 be a professor of something; and my interests by that time left
 me with the initially strange-sounding choice of mathematics
 or theology. I later found out that this is not an unusual
 dilemma: a surprising number of mathematicians and
 theologians started out in the other discipline.* I wound up
 as a mathematician and a teacher of mathematics in part because
 I felt that my own religious beliefs and practice would be more
 of a hindrance than a help to theological teaching and research.
 This background influences my point of view: I sometimes try
 to see myself as a college teacher who happens, through circum-
 stance, to be located in a department of mathematics. Of course
 my writing is not wholly from that viewpoint; I spend my work-
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 ing days in a department of mathematics and inevitably reflect
 is prejudices. Yet I would not be teaching mathematics if I
 did not feel it to be a worthwhile member of the liberal arts

 and capable of being taught as one. I do believe the liberal
 arts ought to have something to say about the human condition,
 the human mind, the human personality; and I very much
 want to say to my students that thinking about mathematics
 is not irrelevant to that subject.

 Traditional Mathematics Courses

 The courses most students are now required to take typically
 include a semester or two of mathematics; most often this is
 calculus, probability, or some sort of "business math" which
 includes algebra, probability, a bit of statistics, and perhaps
 just a touch of calculus. Now, these courses have their place:
 they teach a variety of computational techniques that are indis-
 pensable at key places in science, engineering, accounting, and
 even business. They also have numerous disadvantages. One
 is that at most schools first-year calculus must include all the
 computational techniques necessary for first-year (and part of
 second-year) chemistry, physics, engineering, and perhaps
 psychology or astronomy. The result is that there is very little
 time to do mathematics.

 The person whose mathematics at college was confined to
 calculus probably knows less about what mathematics is than
 the person who gave up after Euclidean geometry in high school.
 Many mathematics departments regret that their majors must
 themselves start with calculus, and they usually arrange separate
 sections or attempt to supplement the usual syllabus in some
 way. (Unfortunately, even if one could reliably identify
 mathematics majors at the start of their freshman year, one
 would still have to enroll them in calculus: the subject matter
 of mathematics dictates that majors must study real analysis,
 to which two years of calculus is a prerequisite). It is not even
 clear that calculus courses as presently constituted do a good
 job for their natural constituency, physics and engineering stu-
 dents. Certainly they are not the vehicle for teaching the liberal
 arts student what mathematics has to say to him.

 Some other mathematics courses may come closer to the mark.
 A business mathematics course which contains an unusual
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 amount of linear programming,* or a "finite mathematics"
 course with a good unit on finite geometry or graph theory,
 may teach better than calculus the scope of mathematics or
 the nature of mathematical ideas. At the same time the bulk

 of the material remains computational, and the tendency for
 such courses to be considered proper for students "not bright
 enough" for calculus means that the stress is placed differently
 than I feel it should be. Computer science courses - for non-
 technical students - appeal to me for another reason: it is becom-
 ing essential in modern society that more people have a grasp
 of the weaknesses and limitations of computers. But some dis-
 cussion of this could be included in other courses; it need not
 occupy a complete course by itself. Finally, a few schools are
 now experimenting with courses such as "mathematics for
 ecology" or "mathematics for social action projects." Well done,
 such programs can make mathematics far more attractive to
 students than traditional courses, particularly to nontechnical
 students; but the interest played on here is interest in the appli-
 cations, rather than in the mathematics as a subject of interest
 in its own right. I would like to be teaching "pure" mathematics,
 pure in the sense that, while it may in fact be applicable (in
 some context, now or in the future), the interest will lie not
 in the applicability of the work but in its internal beauty or
 in what it reveals about the power of the human mind.

 Before departing from the subject of traditional mathematics
 courses, some remarks on teaching techniques are in order.
 First, these materials can be taught inventively in terms of selec-
 tion of materials and approach. One unit of the customary
 calculus sequence is devoted to the study of infinite series (for
 instance, the series 1/2 + 1/4 + 1/8 + 1/6 + ... "adds up" to
 the number 1, while 1/2 + 1/3 + 1/4 + 1/5 + ... does not
 "add up"); many techniques are available for deciding whether
 such a series "adds up," and for finding the total if it does.
 Students tend to exhibit a moderate interest in what the total

 is; but they often feel that rules for figuring the total can be
 applied without regard to whether the series really "adds up."

 * Linear programming seems increasingly (and unlike other sorts of
 mathematics which will occur later in this essay) to be becoming part of
 the common knowledge used in polite discourse. For instance, note its use
 at p. 281 of Marna K. and Frederick S. Carney, "The Economics and Ethics
 of Pollution Control," Soundings 54 (1971), pp. 271-287.

This content downloaded from 141.225.112.53 on Wed, 28 Feb 2018 14:37:45 UTC
All use subject to http://about.jstor.org/terms



 168 SOUNDINGS

 Luckily, there is available a film showing a bridge which sways
 in the wind, getting farther and farther off center until it breaks
 and falls in the water, and it is not too hard to show students
 how this results from the false assumption that a certain series
 "adds up." If the total motion of the bridge "added up," it
 would add to zero and the bridge would hold; but "on the
 way" to zero it gets so far off center it collapses. That film,
 needless to say, is an immense help in teaching calculus.
 Second, some interesting thought has been given to what
 a mathematics course is supposed to accomplish. While tradi-
 tional calculus courses often seem to contain a fixed collection

 of "cookbook" techniques, there are at some schools courses
 which try to teach "problem-solving" without too much restric-
 tion of the types of problems to be considered.* In advanced
 courses for mathematics majors or graduate students the goal
 may be to teach theorem-proving, and interesting work has
 been done with what is called by mathematicians the "Moore
 method." This consists of providing the students with some
 moderate amount of framework, such as a list of problems
 to be solved or theorems to be proved, and then allowing them
 to proceed on their own, with the teacher acting at most as
 a sort of moderator.

 Third, since many courses in mathematics do consist of a
 list of theorems or problem-solving techniques to be mastered,
 it is fairly easy to give the student a list and a textbook and
 let him proceed. This means that a good deal of work has
 been done with self-paced study, particularly in the mass-
 enrollment courses such as calculus. It also means that it is

 easy to separate the teaching and evaluating functions, as dis-
 cussed by Peter Elbow. t Regrettably, these features do seem
 to be special to the problem-solving sort of mathematics

 * The classic text, very readable, is G. Pôlya, How to Solve it (Princeton,
 1945). It is readily available in paperback.

 t "Shall We Teach or Give Credit?", Soundings 54 (1971), pp. 237-252.
 For some typical reports on experimental self-paced study, several also involv-
 ing separation of the teaching and grading functions, see the Newsletter of
 the Committee on the Undergraduate Program in Mathematics, Number
 7, February, 1972. For a more detailed exposition of one program, see John
 Riner, "Individualizing Mathematics Instruction," American Mathematics
 Monthly 79 (January, 1972), pp. 77-86.
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 course; if in a "liberating" mathematics course we are to have
 other goals than expertise in problem solving, we are probably
 forced back toward traditional lectures, discussions, and per-
 haps even term papers.

 Some Mathematical Examples

 As stated above, mathematics involves very few numbers.
 Many elementary essays on mathematics, or elementary books
 on mathematics, seem to rely heavily on numbers. This may
 be an attempt to "look like mathematics," or it may be caused
 by something as innocuous-sounding as typesetting costs: bits
 of mathematics using few numbers tend to use many diagrams,
 and diagrams are more expensive to print. But mathematics
 chiefly involves theorems and proofs; it is more like traditional
 Euclidean geometry than it is like algebra or trigonometry or
 even calculus. The "research" done by a mathematics professor
 in a university customarily consists of discovering and proving
 new theorems, many thousands of which appear in print annu-
 ally.*

 Hence, a student being subjected to mathematics in the course
 of a liberal education ought, at the very least, to see enough
 theorems and proofs to see how they work. In selecting illustra-
 tive theorems for lectures I have given with this goal, I have
 looked for several features. The theorem should answer a ques-
 tion that comes to mind naturally; it may solve a "practical"
 problem, but it should not be so practical as to be a problem-
 solving technique rather than a theorem. It should not too
 closely resemble Euclidean geometry, since much of mathema-
 tics does not, and a fair number of the students will have unpleas-
 ant memories of high school geometry. It should not involve
 many numbers. Yet it should identifiably - indisputably - be
 mathematics rather than simply an exercise in logic. It should
 require a proof or even be hard to believe until proved, yet
 the proof once given should be easy, clear, and convincing.
 These are hard requirements, yet I believe they can be met.
 In fact, I believe that there is a limited number of theorems

 * It is of interest that at almost all universities, the Ph.D. in mathematics
 is awarded exclusively for the production of new mathematics (new theorems)
 and not for writing about mathematics. This is in contrast to the situation
 in, e.g., music or poetry where the prospective Ph.D. usually writes a thesis
 about music or poetry rather than composing music or writing poems.
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 meeting these requirements and yet so easy that they could
 be introduced in the elementary school. As a first example,
 I will discuss a theorem I have presented with apparent success
 to a class of bright third-graders (by apparent success I mean
 that they enjoyed the theorem and the proof, could carry out
 the indicated construction, and could even convince another
 teacher who had not seen the material in advance of the truth

 of the theorem).

 A Theorem on Mazes

 Consider an ordinary pencil-line upper-left-to-lower-right
 maze, such as is shown in Figure 1-A. While one can discuss
 mathematical ways of solving such a maze, that is not our present
 goal. Consider the opposite problem, that of composing such
 mazes. As a child, I dearly loved such mazes and could not
 get enough; but I was unable to compose them to fool myself.
 I could sketch a "solution," draw a maze around it, and then
 trace it or erase the solution; but the resulting maze was of
 limited value to me since I felt I knew the solution in advance.

 As it turns out, there is a simple method for composing a maze
 without sketching a solution first; part of the process is shown
 in Figure 1-B. Draw first the two "outside" parts of the "box,"

 m o
 Figure 1-A  Figure 1-B

 leaving the corners open. Then add lines to the inside of the
 box, following these rules:

 (A) Each added line shall be made in one piece, without lifting
 the pencil; and

 (b) Each new line shall touch the previously drawn parts
 (whether outside lines or added lines) in exactly one place (note
 that the added lines may make corners or even curve; they
 may meet earlier lines at an end or may cross them).

 Continue in this way until the box is "filled up" to whatever
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 extent you prefer. I contend that the result will always be a
 maze, and a particularly nice one; and such a contention is
 the sort of statement eligible to be made into a theorem.

 Theorem. A maze constructed in this way always has a solution,
 and in fact no more and no less than one solution.

 If the reader will take the time to draw an example or two,
 he may decide that this assertion is probably true. Naturally
 I hope at the same time that he will wonder why it is true.
 One advantage of this theorem is that the proof need not involve
 so much formality as to hide the "why." Before proceeding
 with the proof, I ask the reader to take a pencil (or imagination)
 and draw three lines in Figure 1. First, draw the solution to
 Figure 1-A. Second, draw in two paths that might be solutions
 to Figure 1-B after the maze was completed, one path going
 near the top center and the other near the bottom center of
 the box. We are now ready to proceed with the proof.
 Proof When we drew the box outline (less two corners) the

 drawing had exactly two pieces. Each time we added a line,
 it touched exactly one of them; thus the new line did not become
 a third separate piece, and it did not join the two old pieces
 into just one piece. Thus the completed maze consists of exactly
 two pieces. This means that a path can be drawn between the
 two pieces (i.e., they are really separate), so the maze has a
 solution. On the other hand, if the maze had two different solu-
 tions, the two solutions would divide the picture into more than
 two sections (e.g., top, bottom, and center), which is impossible
 since the completed maze has exactly two pieces.
 This is my favorite theorem for elementary school presen-

 tation: the pupils invariably agree that it is mathematics, because
 it requires a clear grasp of the difference between "two" and
 "not-two"; yet the proof involves no arithmetic. This points
 up another facet of mathematics: even in those circumstances
 when numbers do enter, it need not be in a context involving
 arithmetic.

 At this juncture I will introduce a slightly more sophisticated
 group of results, because they illustrate even more concretely
 some mathematics which mathematicians find attractive and

 which is still simple enough to be taught to college freshman
 (provided they have a moderate background in high school
 algebra, or can be given one).
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 Some Theorems on Geodesic Domes

 I included in two experimental courses I taught recently units
 on "combinatorial topology." In this context, "topology" is a
 sixty-four dollar word for "geometry" and "combinatorial"
 means "having to do with counting, not with measuring." My
 first theorem in that unit (which I will ask my reader here
 to accept on faith) is an old one from Leonhard Euler. Consider
 a cube: it has six flat sides or faces, twelve edges, and eight
 corners. A pyramid (with a square bottom, like the Egyptian
 pyramids) has five faces (four sides and the bottom), eight edges,
 and five corners. A dodecahedron (one of those desk calendar
 paperweights with twelve five-sided faces) has twelve faces,
 thirty edges, and twenty corners. Am I violating my promise
 to minimize the use of numbers larger than two? Not really,
 because the point is that in each case the number of corners
 C, plus the number of faces F, minus the number of edges
 E, is exactly two.

 Theorem (Euler's Formula). For a solid object with no holes,
 C + F-E = 2

 Proof. The proof is a quite simple counting argument; the
 reader may find it among other places in George Gamow's
 paperback One Two Three . . . Infinity.*
 The first time I introduced the above theorem, students were

 very impressed by the theorem but rather bored by the proof.
 Fine, it was an unexpected and interesting fact, but a few trials
 convinced them it was true; why bother to fill the blackboard
 with drawings supporting a formal argument in its favor? I
 was hoping to make them happier by going on to the implica-
 tions of this theorem for possible symmetries of solids, and
 thus into possible shapes of crystals; but one of those happy
 coincidences that teachers dream of intervened. When I briefly
 mentioned the fact that this formula had some applications
 to geodesic domes, several of the students mentioned the exis-
 tence of a large geodesic dome model at the far end of the

 * New York, 1947. This book has gone through many reprintings and
 is readily available in paperback; I recommend it heartily to anyone who
 wants to pick up a little mathematics. The proof of this particular theorem
 in Gamow's book is reprinted from R. Courant and H. Robbins' book What
 is Mathematics? (London, 1941), which contains far more mathematics but
 is far slower reading.
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 campus, which I had never seen. As they described it, it was
 a full sphere, perhaps eight feet in diameter, made of steel
 pipe. Considered as a "solid" of the type we are discussing,
 there were large but unknown numbers of faces, edges, and
 corners, with only the following concrete facts known:
 (A) all of the faces were triangles; and
 (B) each corner had five or six edges coming together at

 it.

 The students reported there were "only a few" corners with
 five edges coming together, most having six edges; several stu-
 dents had tried to count the exact number of corners with

 five edges, but had lost count at five or six. Those students
 who had seen the model unanimously disagreed with the state-
 ment I wrote on the board:

 Theorem. If a solid object has no holes, all the faces are triangles,
 and each corner has either five or six edges coming together at it,
 then the number of corners with five edges is exactly twelve.

 Proof Simple algebra will suffice. Picture each edge of the
 figure as a line having two "ends" and two "sides." Thus if
 there are E edges, there are 2E ends and 2E sides. We shall
 count these another way. Each face occupies 3 "sides of edges,"
 so the number of "sides of edges" is also 3F and in fact 3F
 = 2E. Similarly, denote the number of 5-edged corners by Cs
 and 6-edged corners by Ce; the total number of corners is thus
 C = Cs + Ce. Since each 5-edged corner consumes 5 "ends
 of edges" (and similarly for 6) the total number of ends
 accounted for is 5Cs -I- 6Ce and we get 2E = 5Cs + 6Ce. Now
 multiplying the known fact C + F-E = 2by6, we obtain
 12 = 6C + 6F - 6E; we now substitute 4E for 6F, so we can
 write 12 = 6C + 4E - 6E = 6C - 2E. Finally we substitute
 Cs + Ce for C and 5Cs + 6Ce for 2E, and conclude that

 12 = 6(Cs + C e) - (5Cs + 6Ce) = 6C5 - 5Cs + 6Ce -"6Ce
 = Cs which is exactly the desired result: Cs = 12, that is, there
 are 12 corners having 5 edges.

 This theorem produced a delightful effect on the class. Almost
 all of them could follow the individual steps of the proof, but
 the outcome seemed like "magic"; the result seemed based on
 insufficient evidence, particularly since most class members had
 disagreed with the statement of the theorem as first put up.
 At this point we left the classroom, walked across campus to
 the geodesic dome in question, and carefully counted the twelve
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 5-sided corners. From then on, the class not only tended to
 believe theorems when they believed the proofs, but had a
 dramatically heightened respect for the power of careful rea-
 soning. This theorem often tempts me to alter so that it might
 be quoted seriously the oft-quoted dictum of Mark Twain:
 "There is something fascinating about science. One gets such
 wholesale returns of conjecture out of such a trifling investment
 of fact."*

 One further well-known theorem in this area of mathematics

 deserves citation while we are on the subject. Techniques similar
 to the preceding theorem allow us to treat many facts relating
 to symmetry without any reference to measurement. Let us
 define a regular solid to be one in which each face has the
 same number of edges (say r) as every other face, and each
 corner lies on the same number of edges (say s) as every other
 corner.

 Theorem. There are at most five regular solids without holes.
 Proof. Counting "ends of edges" by edges (2 each) and faces

 (r each) we obtain 2E = rF. Counting "sides of edges" by edges
 (2 each) and corners (s each) we obtain 2E = sC. Substituting
 C = 2/sE and F = 2/rE in C + F - E = 2, and dividing by
 2E, yields 1/s + 1/r - 1/2 = 1/E. Now, s and r must be at least
 3 (each face and each corner must involve at least 3 edges)
 but they cannot both be 4 or more since then 1/s + 1/r - 1/2
 would be less than zero and could not equal 1/E. A bit of trial
 and error reveals that there are only five possible values for
 s and r: if s = 3, r = 3, 4, or 5; if s = 4, then r = 3; and
 if s = 5, then r = 3.

 In fact, there are five completely symmetrical regular figures,
 the tetrahedron (triangular pyramid: s = r = 3), cube (s =
 3, r = 4), octahedron (two square pyramids back to back: s
 = 4, r = 3), dodecahedron (desk calendar: s = 3, r = 5), and
 icosahedron (made of twenty triangles: s = 5, r = 3). Of course,
 the proof above gives only a maximum number: it does not
 guarantee that the figures can actually be built, and says nothing
 at all about the possibility of, for instance, building them with
 all edges the same length.

 * Quoted in this instance from Clifton Fadiman, The Mathematical Magpie
 (New York, 1962). This book and its predecessor by the same editor, Fantasia
 Mathematica (New York, 1958), are also highly recommended to anyone who
 wants light reading that gives some notion of the scope and fun of mathematics.
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 A Mathematics Course for the Liberal Arts Student

 Having seen a few pieces of mathematics in some detail, let
 us turn to the question of what a "liberating" mathematics course
 might contain. It will contain a healthy number of theorems
 and proofs, both because they are needed in order to show
 how mathematics proceeds, and because such mathematics as
 is done in the course will itself contain them. There are at
 least two other notions that must be introduced so as not to

 distort the idea of "what mathematics is": axiom systems, and
 unsolved problems.

 First, the idea of axioms. Before a real problem (e.g., about
 geodesic domes) can be treated mathematically, one must specify
 the known conditions ("no holes": our theorems do not apply
 to doughnuts). Before a collection of mathematical ideas, or
 a class of real problems, can be treated systematically, one must
 extract the mathematically important common features. In high
 school one may get the idea that the axioms or postulates of
 Euclidean geometry are supposed to be statements about the
 real world. That, from the mathematician's point of view, is
 simply not so. One can casually throw away the axiom

 For every line and every point not on the line, there is exactly one
 line through the given point parallel to the given line.

 and substitute some other axiom, for instance,
 For every line and every point not on the line, there are at least
 two distinct lines through the given point which do not intersect
 the given line.
 One can then start to prove theorems using this new

 set of axioms. Of course, they will be different theorems
 than one has seen before - one of them is that the angles of
 a triangle always add up to less than 180 degrees - but they
 are no less interesting mathematically because they do not seem
 to relate to the real world. At other times, axiom systems are
 contrived to apply to several different "real-world" situations:
 since both addition and multiplication are commutative, associa-
 tive operations (that is, numbers can be combined in any order)
 any theorem proved about an arbitrary commutative, associative
 operation will state a true fact about both addition and multip-
 lication: two facts for the price of one. Mathematicians also
 have a serious interest in the potentialities of axiom systems
 per se; we will return to this later.
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 Second, we must mention the existence of unsolved problems
 in mathematics. These are, in effect, statements proposed as
 theorems for which no proof or disproof has yet been found.
 One classical example is the Four Color Problem, which loosely
 reads as follows: suppose one is given a straightforward map
 of a continent divided into countries. Suppose each country
 comes in one piece, with no holes and no colonies. One wants
 to color the map so that whenever two countries have a length
 of border in common, they are colored with different colors
 (two countries touching at only one point - like the states
 Colorado and Arizona - may be given the same color). The
 following theorem is known:
 Theorem. Every map may be colored with no more than five colors.
 The proof is perfectly accessible to college freshmen; in fact,
 it follows from Euler's Formula C + F - E = 2, with several
 steps of the proof being very similar to the theorems on geodesic
 domes above. Unfortunately, in a century of effort, no one
 has ever found a map that needs five colors. Yet on the other
 hand, no one has ever been able to prove that four colors are
 always enough.

 Unsolved problems have contributed a great deal to mathema-
 tics: whole new branches of mathematics have developed in
 the attempt to answer them. Yet the unsolved problems are
 not invariably found in the "outer reaches" of mathematics:
 some live very close to arithmetic. One such problem is called
 the Last Theorem of Fermât. Can there be positive whole num-
 bers a, b, c, and n, with n larger than 2, such that an + bn
 = en ? (an means a x a x ... x a, n times). It is easy to find
 such numbers for n = 2:32 + 42 = 52. Yet no one has ever

 found an example for n larger than 2, and no one has ever
 proved that no such example exists.

 This roughly completes a summary of "what mathematics
 is." If a student gets some notion of the workings of axiom
 systems, theorems, proofs, and the sorts of unsolved problems
 that mathematicians like to work on, he will have a good notion
 of how a mathematician spends his time. If I have been success-
 ful so far, the reader (and the student) may agree that the
 theorems introduced above have an element of beauty, and
 they may somewhat enlarge one's feeling for the power of logic
 or the ingenuity of the human mind. Still, if I am to support
 fairly my claim that mathematics is a liberal art, I ought to
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 offer something more. I want to say that mathematics can be
 used to say something about problems that occur naturally to
 the human mind and yet seem "too large" for the human mind
 to handle in other than a highly speculative manner. Almost
 by definition, these will be big enough problems that I can
 barely mention them: yet I will be able to briefly introduce
 two areas that may be suggestive. One is the notion of infinity;
 the other is a problem that might be phrased as: "Does every
 reasonable question have an answer?"

 The Notion of Infinity

 In view of the fascination that the infinite holds for so many
 people, it is surprising how few realize that a good deal of
 mathematical effort has been devoted to the study of "infinity"
 in its various manifestations. There are at least four or five

 major ways, and a number of minor ways, in which it has been
 approached.

 We will begin with the notion of "cardinal number" or simply
 "number." Most traditional undergraduate mathematics courses
 carefully avoid defining the word number, or, if they do define
 it, do so erroneously. One way to begin which gives a possibility
 of success is to define first the phrase "the same number as":
 one pile of things has the same number of things as another
 pile if we can organize all the things into pairs, with one thing
 from each pile in each pair. We can now define, if we wish,
 the phrase "has three things"; a pile has three things in it if
 it has the same number of things as there are asterisks between
 the brackets in [***]. Now, rather than go on with the rather
 painful definition of number, suppose that we have given such
 definitions of" 1 thing," "2 things," . . . , and let us say (tentatively)
 that a pile has "infinitely many things" if it has the same number
 of things as the whole (infinite) list [ 1, 2, 3, ... ]. We are then
 well on our way to an arithmetic of infinity. We can make
 (and prove) statements like:

 Theorem. The list [ 1, 2, 3, ... ] has the same number of things
 in it as the list [2, 4, 6, ...}.

 Theorem. The collection of all fractions (1/2, 2/3, 1/12, ... ) has
 the same number of things in it as the collection of all whole numbers
 (1,2,3,...).

 Theorem. The collection of all points on a line one inch long does
 not have the same number of things in it as the collection of all whole
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 numbers: there are more points on the line than there are whole numbers.
 Of course, the last theorem is the exciting one: it implies
 that there are different sizes even among infinite collections,
 some larger than others. The reader who would like to see
 the above theorems written out nicely, and more, is referred
 to Gamow's One Two Three . . . Infinity.
 Another somewhat more sophisticated approach to infinity
 lies in the notion of "ordinal number." When working with
 cardinal numbers above, we were in effect extending the list
 1, 2, 3, ... to include the numbers infinity (all whole numbers),
 infinity (points on a line), infinity (?),.... It is almost possible
 to extend the sequence first, second, third, ... to include "infinite
 numbers"; surprisingly, the infinite numbers in this list look
 very different from the infinite numbers one gets in the earlier
 case. Yet a third, and much more sophisticated, approach allows
 talking about "infinitely small" numbers.
 Students have been known to ask which is the "right"
 approach to infinity. Of course, it is just a matter of different
 axiom systems, equally useful; but I have encountered certain
 undergraduate philosopher types so wrapped up in ideas about
 infinity that they do not like that way out. When all else has
 failed, I have been known to trot out the parable of the rings
 from Lessing's Nathan der Weise.
 In the common mind, the notion of infinity is also tied up
 with the size and shape of the universe. In a year course - or
 perhaps in a semester course, with bright enough students or
 at the cost of other material - one can do enough mathematics
 to grapple with the notions of a "curved" universe, time as
 a "fourth dimension," and some similar ideas that can be worked
 with far more concretely than most people realize.

 Does Every Reasonable Question Have an Answer?

 In moving to this topic we get into an area called "foundations
 of mathematics" or even "metamathematics"; it is the province
 of philosophers as well as mathematicians. Questions tend to
 be difficult, and the theorems and proofs involved tend to be
 beyond the ability of most undergraduate mathematics majors,
 and farther beyond the ability of most freshmen. Nevertheless,
 there is a result that seems important and suggestive enough
 that it bears discussing with a larger number of students than
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 now see it. This is the famous Incompleteness Theorem of
 Kurt Godei.* Suppose we accept the facts we all know about
 arithmetic, which form a finite list of facts. In fact, it is possible
 to write a list of about five axioms from which (with appropriate
 definitions) all our other knowledge about arithmetic may be
 deduced as theorems. Now, there are "arithmetic problems"
 we cannot solve. Fermat's Last Theorem, mentioned above,
 is one of them. The Four Color Problem is another (while reduc-
 ing it to a statement about arithmetic may appear difficult,
 look at our geodesic dome theorems). If there is a map needing
 five colors, we should be able to find it; if not, we ought to
 be able to prove there is not. Either there exist or do not exist
 numbers a, b, c, n, with an + bn = en; we should be able
 to find such numbers, or show that no such numbers can be
 found.

 The incompleteness theorem of Godei, informally stated,
 says: There exist logical statements, structurally capable of being
 theorems, which cannot be either proved or disproved simply
 by applying the rules of logic to our known finite list of facts
 about arithmetic. Further, this is not just because we have started
 with the wrong list of facts: for any finite collection of axioms
 for arithmetic, there are statements which cannot be proved
 or disproved.

 Now, it is not known whether Fermat's Last Theorem or
 the Four Color Problem are among these undecidable state-
 ments, and most mathematicians assume they are not. That
 is, we expect them to be proved or disproved, next month,
 next year, or perhaps in a hundred years. But it is just possible
 that a problem mathematicians have tried to solve for years
 may turn out to be insolvable on the basis of past knowledge:
 neither true nor false, or rather capable of being called either
 true or false, either choice creating a new axiom for our list.
 This happened to us twice in the 1960's: two propositions known
 as the Continuum Hypothesis and the Axiom of Choice were
 found to be undecidable.

 * One of the more readable formal expositions of this theorem is given
 in Paul J. Cohen, Set Theory and the Continuum Hypothesis (New York, 1966).
 Forabrief andinformalexposition, see thearticleby Nageland NewmaninKline*s
 book of readings (following note).
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 Conclusion

 A course composed of material selected from that above and
 similar material from other branches of mathematics might be
 called "Mathematics Appreciation" or "Mathematics for the
 Liberal Arts"; at some schools where such a course has been
 instituted it has been named "An Introduction to Mathematics,"
 probably a less satisfactory title since it is usually a terminal
 mathematics course. Mathematicians tend to refer to it among
 themselves as "Mathematics for Poets." When I have taught
 it, I have tended to do the actual mathematical content in lec-
 tures and assign readings of a somewhat more literary
 nature - e.g., the two mathematical anthologies by Clifton
 Fadiman, supplemented by (at the most difficult) the Gamow
 book or others of a comparable level.*

 I have now said something about "what mathematics is" and
 something about the kinds of mathematics that might go into
 a course for liberal arts students. I hope a few of the topics
 touched on were attractive enough to provide some support
 for the claim that mathematics can be aesthetically pleasing.
 Still, I have not yet explicitly defended my claim that mathema-
 tics is a liberal art. I have hoped that the "big questions" raised
 a few paragraphs ago would be suggestive in this area; absent
 a clear, applicable definition of liberal arts, it is hard to do
 more than be suggestive. But it is possible to propose that
 mathematics reveals something about the human condition.

 On the one hand, it shows the human demand for rational
 system, a craving to generate a multitude of truths from a few
 basic ones. That is, mathematics expresses the rational passion
 to analyze complex, frequently unmanageable concepts such
 as infinity, number, and space in more manageable formal
 terms. And the imaginative ingenuity, playfulness, and sense
 of style required of a mathematician are similar to what is
 required of creative artists in any field.

 On the other hand, the content as well as the organization
 of mathematics may sometimes aid in thinking about the human
 condition: for instance, Gödel's Incompleteness Theorem shows
 that there are limits to the ability of mathematics (and perhaps

 * The most valuable paperback reference not yet cited is Readings from
 Scientific American: Mathematics in the Modern World, edited by Morris Kline
 (San Francisco, 1968).

This content downloaded from 141.225.112.53 on Wed, 28 Feb 2018 14:37:45 UTC
All use subject to http://about.jstor.org/terms



 ONE AND ONE IS NOTHING 181

 of man) to analyze and systematize. Though mathematical
 reason has the highest ambitions and an amazing power, there
 are still undecidable propositions; the situation of the
 mathematician is not so different from the philosopher's as
 might have been supposed.
 Such observations can emerge naturally and convincingly in

 courses on mathematics for liberal arts students. My own experi-
 ence in trying to teach courses based on this sort of content
 and philosophy has been generally satisfactory. Naturally there
 have been some difficulties - most conspicuously in finding
 appropriate material to test or base grades on, since much of
 it does not promote a particular problem-solving ability of the
 sort intended by more traditional mathematics courses.
 Nevertheless the students have responded affirmatively, and
 I am delighted to see an increasing number of schools with
 courses of this general type.
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