CONGRESSUS

NUMERANTIUM

WINNIPEG, CANADA




Permutations using Stacks and
Queues

Edward T. Ordman
William Schmitt
Memphis State University, Memphis TN 38152 U.S.A.

Abstract

We study abstract machines that permute the integers 1 to n by storing
numbers temporarily on stacks or queues. By looking at permutations using
only one stack or two queues, we provide an easy one-to-one correspondence
between two sets counted by the Catalan numbers. In the case of several queues,
we extend a known algorithm for finding the length of an increasing sequence
in a permutation to find an instance of a2 maximal length increasing sequence.
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1 Introduction.

If the numbers 1,2,...,n are permuted by passing them through a channel with two
parallel queues, the result is the merger of two increasing sequences. Knuth [K], (Vol
3, 5.1.4, page 64), observes that the number of such permutations is the nth Catalan
number, the same as the number of permutations produced by a channel with one
stack, but observes that the proof he gives is difficult and the one-to-one correspon-
dence is not very natural (in fact, it involves work equal to sorting n numbers). We
observe that if we regard the two channels as programmable devices, we can display
one-to-one mappings between the sets { merger of two sequences } <= { program
for two-queue channel } <= { program for one-stack channel } <= { Catalan set,
e.g. binary trees } where each correspondence is relatively straightforward, at least
in the sense that each correspondence can be computed in time at worst O(n). We
give these correspondences in Section 2.

The situation for more than two queues, or more than one stack, is considerably
more complex; it is examined at some length in [G] (Chapters 7 and 11). In section 3
we examine the situation of multiple parallel queues, showing that these techniques
can be extended to provide a nice algorithm for the upsequence problem, that of find-
ing longest increasing subsequences, and related problems. The upsequence problem
was previously studied, for example, by [Ki].
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Given the intractability of multiple-queue problems, as reported by [G], we omit
discussing them further here.

We will denote a permutation p of the integers (1,2,...,n) by (p1,p2,-..,Pn)-
We will typically regard permutations as being produced by passing the integers
(1,2,...,n) through a machine which accepts integers one at a time as input, possibly
stores the integers in one or more data structures, and then outputs them one at a
time. For example, a machine with one stack for data storage could convert (1,2, 3,4)
into (3,2,4,1) by the following sequence of events: (a) (accept and) push 1; (b) (accept
and) push 2; (c) (accept and) push 3; (d) pop 3 (and output it); () pop 2 (and output
it); (f) (accept and) push 4; (g) pop 4 (and output it); (h) pop 1 (and output it). If we
denote the operations push and pop by + and — respectively, then we can summarize
this program by ++ + — — 4+ ——. Such machines are considered, for example, in [K],
(Vol. 1, Sec. 2.2.1, exercises and answers), and in [O].

We will use the term permutation machine to denote a machine such as described in
the paragraph above. The specific machine there is a one-stack permutation machine,
for obvious reasons.

The Catalan numbers are given by the formulaa, = (*") — n’_:'l). A widely known
circumstance in which these numbers occur is the number of ways in which parentheses
may be introduced into a product of factors, where associativity and commutativity
are not assumed. E.g. the product of two factors (aa) can be expressed in only one
way, but three factors can be multiplied in two ways ((aa)a) and (a(aa)); four in five
ways ((aa)(aa)), ((a(aa))a), (((aa)a)a), (a(a(aa))), and (a((aa)a)); and so on. For
pointers to further places these occur, see [O] or [K, Vol. 1, p.531].

Given a permutation (py,ps,...,pn), the permutation graph associated with this
permutation has the vertices 1,2,...,n and contains an edge from p; to p; in exactly
the cases when 7 < j and p; > p; in the permutation. For example, the graph deter-
mined by (3,4,1,2) has the edges 3-1, 3-2, 4-1, and 4-2 and is thus a quadrilateral.
(We regard the edges as undirected). A graph is called a permutation graph if and
only if it arises from some permutation in this way. For more on permutation graphs,
see [G, Chapter 7).

It is well known that a permutation (py,ps,...,pn) is the union of exactly k (and
no fewer) ascending sequences if and only if has a descending sequence of length
k (and no longer one); for example (3,1,4,2) is the union of (3,4) and (1,2) and
has no descending sequence longer than (3,1). Similarly, it is the union of exactly
k descending sequences if there is a longest ascending sequence of length k. An
ascending sequence is also called an upsequence and, if regarded as a list of vertices
in the permutation graph, a maximal ascending sequence is a dominating set (every
vertex in the graph is connected to it by an edge).

ACKNOWLEDGEMENTS. Conversations with C. C. Rousseau, Haklin Kimm, and R.
Clapsadle have been helpful during this work.
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2 One stack or two queues.

We will call a machine a two-queue permutation machine if it has two queues available
to store numbers between receiving them and outputting them. Such a machine has
available four operations: E; and E; to enqueue data on queue 1 and 2 respectively,
and D; and D, to dequeue data.

We first observe that any permutation that can be produced on a two-queue
machine can be produced on a simpler machine, which we call a one-queue with
bypass machine. From now on we will abbreviate these as a 2Q-machine and a 1QB-
machine, respectively. The 1QB-machine operates as follows: there is a single queue
with operations E and D (enqueue and dequeue), but in addition there is a bypass
and by the operation B an integer may be moved directly from input to output,
leaving the queue unchanged. for example, the permutation (3, 4, 1, 2, 5) can be
produced by the 2Q-machine by a program such as E,E;E,E;E,D;D,D,D,D; or
EyE2E\DyEyDy Dy D2 Ey Dy it could be produced by the 1QB-machine by a program
EEBBDDED or EEBBDDB

We wish to show that this can be made general: any output of the two-queue
machine can be produced by the one-queue with bypass machine. We will actually
show somewhat more. Clearly every output of the two-queue machine is a union of
two ascending sequences (one formed by the output of each queue). We will give an
algorithm which, given a permutation that is a union of two ascending sequences,
gives a program for the one-queue with bypass machine.

Algorithm 2.1 Given a permutation (py,ps,...,pn) which is a union of ezactly two
ascending sequences, wrile a program for the 1QB-machine that will produce this
permutation.

We actually begin by giving an inverse algorithm: given integers arriving in the
order (pn,Pn-1,...,p1), we produce the output (n,n —1,...,1). The algorithm may
be described as an output-driven, greedy algorithm. The notation below is somewhat
abbreviated but should be clear.
input = (PTH Pn—1y--- ~P1): OUtPUt = ()
nextoutput =n, queue = ()

WHILE nextoutput > 0 DO
IF head_of_queue = nextoutput THEN
BEGIN dequeue; nextoutput = nextoutput —1 END
ELSE IF nextinput = nextoutput THEN
BEGIN bypass; nextoutput = nextoutput —1 END

ELSE enqueue;

0D;

If this algorithm is reread with the operations dequeue, enqueue, and bypass un-
derstood to include writing the characters D, E, and B to an output file, then
the program will both sort the numbers in decreasing order and produce a pro-
gram for the machine. For example, the sequence (6,5,7,4,1,3,2) is placed in order
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(7,6,5,4,3,2,1) by the program EEBDDBEBBD (6 and 5 are enqueued, 7 is by-
passed, 6 and 5 are dequeued, ...).

We now simply invert the program to solve the original problem. That is,
(1,2,3,4,5,6,7) can be permuted into the order (2,3,1,4,7,5,6) by the program
EBBDBEEBDD; the program constructed above is written backwards with E and
D interchanged.

Proposition 2.2 The algorithm above runs in time O(n) and, given as input any
union of two ascending sequences, writes a program to produce it on the 1QB-machine.

PROOF: It is clear that the program runs in time O(n); it produces one token
(B, D, E) per loop and produces at most 2n tokens. To see that the method works
for any union of two ascending sequences (any product of the 2Q-machine), it suffices
to observe that the integers held in the queue are precisely those that are delayed
in the permutation; that is, k is enqueued if k = p; with j > k. The delayed and
non-delayed elements each form an ascending sequence. The non-delayed elements
are always available for bypass when needed for output; the delayed elements are
always placed in the queue (some lower element is needed for output first) and are
available there in the order needed since they too form an ascending sequence. O

Corollary 2.3 The set of permutations output by the two-queue machine and by the
one-queue with bypass machine are identical.

PROOF: It is clear that any program for the one-queue with bypass machine can
be translated easily for the two-queue machine. Substitute E, for E, D, for D, and
E;D; for B. Since the second queue is empty except when a number is actually being
passed, the results are clearly the same. This, with the algorithm above, completes
the proof. [m]

For completeness, we note that it is easy to give the same construction as the
algorithm above for the one-stack machine; such a construction is implicitly given in
[Knuth]. Here we state it in the “positive” order:

Algorithm 2.4 Given a permutation which can be produced by the one-stack
machine, produce a program for the one-stack machine.

input = (1,2,...,n), wanted_output = (p1,p2,...,pn)
k=1, stack = ()
WHILE k£ <n DO
IF top_of_stack = p; THEN
BEGIN pop; k=k+1 END
ELSE push;
0D;

Here we suppose that push places the token + on the output file and pop places
the token — on the file. Obviously, this algorithm produces a working “program” for
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a permutation only if the permutation can be produced by the one-stack machine. A
permutation meets this condition if and only if it contains no subsequence (pi, 5, Pk)
with ¢ < j < k and p; > px > p,.

We are now ready to carry out the program of one-to-one correspondences adver-
tised in the introduction.

STEP ONE. Every permutation which is a union of two ascending sequences can be

produced by the two-queue machine, or by the one-queue with bypass machine; we
have produced a program for the latter machine, in time O(n).

STEP TWO. We now state a one-to-one correspondence between programs produced
by algorithm 2.1 and those produced by algorithm 2.4. First, note that the programs
produced by algorithm 2.1 meet the following condition: the sequence E'D never
appears. The reason is that if the queue is empty and the next input is the desired
output, we bypass the queue; if the next desired output is on the queue, we always
dequeue before we enqueue. Hence E is always followed by B, never by D. Hence, we
can encode 1QB-machine programs in two letters, instead of three, by substituting
ED for B wherever B occurs. The original program is recoverable by substituting
B for ED, so the mapping is one-to-one and clearly takes only linear time. Now we
map programs using the symbols D and E to one-stack programs by mapping D to —
and E to +. The result will clearly satisfy the conditions to be a one-stack machine
program (equal numbers of + and —, and any initial substring has at least as many +
signs as — signs), and the inverse mapping from one-stack to 1QB-machine programs
meets a similar condition.

We have thus completed a proof of the following theorem.

Theorem 2.5 The number of permutations of length n which are the union of two
ascending sequences is equal to the number of sequences of length k with no subse-
quence (pi,p;,px) withi < j < k and p; > p > p;.

The resulting correspondence is not obvious to the naked eye but is easily com-
putable by hand or in time O(n). The one-to-one correspondence is pointed out in
Knuth [K, vol. 3, page 64] where it is derived from a complex argument based on "
tableaux. Knuth states “Curiously, there appears to be no apparent way to establish
a correspondence between such permutations and binary trees, except for the round-
about method via Algorithm I that we have used here.” Knuth’s method in dealing
with unions of two ascending sequences appears to require time O(nlogn); he finds
the problem for the one-stack machine easy.

STEP THREE. For completeness, we go on to the correspondence between one-stack
machine programs and binary trees, where we regard multiplicative notation such as
(a((aa)a)) as a reasonable notation for binary trees.

Here is a recursive program that maps appropriate sequences of + and — to trees.
The basic step divide(S, Sy, S;) cuts S into two substrings S and S; by finding the
first place after the start of S where the number of + and — signs is equal; everything
after that point is S; and what is up to that point, after dropping the leading + and
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terminating —, is S (So the sequence + + — + + — — — 4+ + —— initially splits as
Si=4+—-4++-——S=++--)
recursive PROCEDURE maketree( S:
sequence of + and — for 1S-machine )
BEGIN
IF S is empty THEN RETURN ELSE
BEGIN divide(S,S;, S,)
PRINT ’(’; maketree(S,); PRINT ’)(’;
maketree(S;); PRINT ’)’; RETURN;
END;
END;

For example, the sequence + + — + + — — — + + —— maps to
COCCOO) O CCO O) O) ;replacing each () pair by an a we
get (a((aa)a))((aa)a) which is the desired output. For an argument that this is a
reasonable mapping between sequences of + and — and binary trees, see e.g. [0].

Unfortunately this program seems to require reading O(n?) symbols, since the
string must be read at each level of recursion. To do things in O(n) steps, we unwind
the recursion and produce output as we go along. In the following program, d repre-
sents the depth of recursion (initially d = 0) while h(d) =1 or 2 if we are processing
Sy or S; at that depth.

PROCEDURE readonce
initially d =0, h(1)=0 for i1=1...n
BEGIN
READ input token
CASE
+: BEGIN PRINT '(’; d=d+1; h(d)=1; END;
—: BEGIN WHILE (h(d) = 2) DO
BEGIN PRINT ’)’;h(d)=0; d=d—1; END;
IF (h(d) =1) THEN
BEGIN PRINT ’)(’; h(d) =2; END;
END;
end of input: WHILE (d >0) DO
BEGIN PRINT ’)’; d=d—1; END;
END CASE;
END;

This executes the case statement once per input token; each while loop decrements
d; d is incremented only by + tokens so the while loops are done at most n times for
a permutation of n numbers. Thus the program executes O(n) commands.

The above discussion was motivated by the following belief:

Metaconjecture 2.6 Generally speaking, if two sequences of sets are counted by
the Catalan numbers, there ought to be an easy (O(n)) one-to-one mapping between
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them.

An earlier form of this belief was expressed in [O], which proposed a strategy
for recursively finding one-to-one mappings between such sets. If one holds that
belief, and that recursion this simple can be unwound as it was done here, then the
metaconjecture becomes plausible. It is not clear how it can be formalized, if at all.

3 Several queues.

In this section we use an algorithm like 2.1 above to produce programs for machines
with more than one queue. Finding maximal increasing and decreasing subsequences
in a permutation and dividing it into disjoint increasing or decreasing subsequences
are problems that have been examined repeatedly due to their applications in laying
out VLSI chips, e.g. [DB]. Such problems are known solvable in time O(n log n), and
we mainly rely on an algorithm from Chapter 7 of [G].

Algorithm 3.1 Given a permutation (p,p,,...,p,), determine the lowest k such
that the permutation can be produced by a k-queue machine and give the program, in
time O(nlog k).

The algorithm of [G, page 167 takes a permutation as input and sorts it into
ascending order. We will want one that takes the reversed permutation and sorts it
into descending order, but will give merely an informal description instead of the full
pseudocode.

Let k denote the next desired output; initially it is n. Let g denote the number
of queues created so far; ¢ = 0. If the next desired output is at the head of queue
J, dequeue it and record D; in the program. If not, then enqueue the next input.
Choose a queue by finding the first existing queue Q; . .. @, whose tail is greater than
the input. This involves a binary seach of the queue tails, and is the O(log k) step.
Enqueue the new input there; if there is no such queue start a new one and increment
g. (The queue tails will always be in increasing order.) ,

For example, to sort (3, 7, 6, 4, 2, 1, 5) into order (7,6, 5,4, 3,2, 1), we enqueue
3 in @ which for clarity we write as £;(3). The operations the algorithm produces
are E1(3), E2(7), D2(7), E;(G), Dz(ﬁ), E2(4), E1(2), El(l), E3(5), D3(5), D2(4), D](S),
D4(2), D (1).

We now add one further data structure. Whenever we enqueue a number J, we
store (indexed by 7) a pointer to the number in the tail of the preceeding queue (if
any). Thus the operation E;(4) stores a pointer from 4 to 3 (the tail of @1); Es(5)
stores a pointer from 5 to 4. When we create a new queue we store a copy of the
first entry in it in a variable named head_of_sequence; since in this example Q5 is
the last queue created, we will now be able to recover a sequence through the pointer
chain 5, 4, 3.

The algorithm clearly, for no extra effort, divides the permutation into k descend-
ing sequences (in the above case, (3,2,1) in queue 1, (7,6,4) in queue 2, and (5)
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in queue 3). We must show that the number of queues k is minimal. But this is
clear since the sequence traced by pointers from head_of_sequence, when read in
increasing order, is an increasing sequence of length k in the permutation.

Proposition 3.2 Algorithm 3.1 runs in time O(nlog k) and determines a program
for producing the permutation; finds the length k of the longest increasing subsequence;
finds an increasing subsequence of length k; and divides the partition into k decreasing
subsequences.

It is trivial to alter the algorithm to sort into ascending rather than descending
order, to interchange “increasing” and “decreasing” in the above proposition. To
produce a program to convert (1,2,...,7) into (5,1,2,4,6,7,3), of course, one inverts
the order of the program and interchanges D; and E; while preserving subscripts.
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