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 11206. Proposed by Mircea Ivan, Technical University of Cluj-Napoca, Cluj-Napoca,
 Romania, and Alexandru Lupas, University ofSibiu, Sibiu, Romania. Find

 n o

 iimy(q\ ?-*oo f-f \k J k=\

 where {x} denotes x ? [xj, the fractional part of x.

 11207. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA. Let (an)
 be a sequence of distinct real numbers with the property that for each e > 0 there exists
 rj > 0 such that for all positive integers n and m

 6 < \an -am\ < 6 + r? ==$> \an+x - am+1| < 6.

 Prove that (an) converges to a (finite) limit.

 SOLUTIONS

 No Three Faces with the Same Number of Edges

 10856 [2001, 172]. Proposed by Andrei Jorza, "Moise Nicoara" High School, Arad,
 Romania.Fmd all bounded convex polyhedra such that no three faces have the same
 number of edges.

 Composite solution by Edward Ordman, University of Memphis, Memphis, TN;
 Richard Stong, Rice University, Houston, TX; and the editors. Necessary condi
 tions for such polyhedra. Begin with Euler's formula V ? E + F = 2. Let F; denote
 the number of faces with / edges. Note that F\ = F2 = 0, so

 F = F3 + F4 + F5 + F6 + ->- .

 Since each edge is on exactly two faces,

 2F = 3F3 + 4F4 + 5F5 + 6F6 + .

 Each vertex is on at least three faces, so

 3V < 3F3 + 4F4 + 5F5 + 6F6 + ,

 with equality only if each vertex is on exactly three faces. Thus

 12 = 6V - 6E + 6F < 2(3F3 + 4F4 + 5F5 + )

 - 3(3F3 + 4F4 + 5F5 + )+ 6(F3 + F4 + F5 + )
 - 3F3 + 2F2 + F5 + 0F6 - F7 - 2F8-.

 Since F/ < 2 for all i, we can achieve the total 12 only if F3 = F4 = F5 = 2 and
 Fi = 0 when / > 7. The only term still not known is F6, which can be 0, 1, or 2.
 In all three of these cases, we have equality in the inequalities, so each vertex is on
 exactly three faces, and therefore on exactly three edges. Therefore two faces that are
 not disjoint must have exactly one edge in common. Also, if three edges meet in a
 vertex, then any face that contains that vertex must contain exactly two of those edges.

 Each bounded and convex polyhedron produces a planar graph by stereographic
 projection; the graph has all the combinatorial properties of the original polyhedron.
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 We construct these graphs by starting from two contiguous faces and adjoining, se
 quentially, a new face to an existing one. A face with three, four, five, or six edges will
 be called a 3, a 4, a 5, or a 6, respectively.

 e

 /T^\ ^??^ ?F%\ fi=h / r*\\\ ?wxw8 /// \\ / rA \
 \f W \i \ \r ?t/ \f v
 c y c y c y cy
 Graph 1 Graph 2 Graph 3 Graph 4

 Case 1: F6 = 0. There are eight vertices. The two 5s cannot be disjoint, because
 that would require ten vertices, so they have one edge in common. Let one of the 5s be
 the unbounded face. Label it abfgh, and let the other 5 be abcde. These are the only
 vertices. The other faces are in the region bcdeahgfb. Any face that has b as a vertex
 must contain c and / (but none of the other vertices) and is therefore bcf, a 3. By the
 same argument, aeh is the other 3. One of the 4s has cf as an edge, must contain d, g
 but none of a, e, or h, and is therefore cdgf. The four remaining vertices yield the
 remaining 4.
 Thus the case F6 ? 0 yields Graph 1.
 Case 2: F6 = 1. There are ten vertices. The two 5s cannot be disjoint, since then
 the 6 would have at least three vertices in common with one of them. The two 5s thus

 have one edge in common, so together they account for eight of the ten vertices. Label
 the two additional vertices j and k. Let one of the two 5s be the unbounded face, label
 it cde8y, and label the other 5 abcy?.
 Let F be the third face with vertex c. It must contain b and d but no other vertex of

 either 5. Since F also has at most j and k outside the 5s, F cannot be the 6, so F is a
 4 or a 3. If F is a 4, then F must be bed] or bedk. Exchanging the labels j and k if
 necessary, we may assume F is bedj. If F is a 3, then F is bed. The other face G that
 contains bd must also contain a and e, (but not ?,y,or 8) and must be a 6 or a 4. If G
 is a 6, then G is abdejk or abdekj. If G is a 4, then G is abde.
 To summarize: starting from vertex c we get three possibilities: (i) bedj, (ii) bed,
 abdejk, and (iii) bed, abde. Similarly, starting from vertex y we are no longer free to
 switch labels j and k, so we will get these possibilities: (ij) ?y8j, (i2) ?y8k, (iii) ?yS,
 a?8ejk, (ii2) ?y8, a?Sekj, and (iiij) ?y8, a?8e. Next we must pair each of the three
 possibilities from the first list with each of the five possibilities from the second list.
 (i)(ii) would give four edges on j, so it is impossible.
 For the pairing (i)(i2) the face F that contains d must contain e and j but not b and
 ?>; it must be a 6 or a 3. If F were the 6, then it would contain the third edge from e,

 for which the only choices would be ea, ej, or ek\ ea or ej would make F a 5 or a 3,
 and ek would leave a with only two edges. If F is a 3, then F is edj; the other face G
 with edge ej contains b, a, 8, k, so G is the 6 labeled ejbak8 and the other 3 is ak?.
 This is Graph 2.
 (i)(iii) and (i)(ii2) would give more than three edges on j, so they are impossible.
 (iXinj) The region edjbae would surround k and leave no possibility for the third
 edge on j, so this is impossible.
 (ii)(ii) and (ii)(i2) are relabeled versions of (i)(iii) and (i)(ii2).
 (ii)(i?!) and (ii)(ii2) have two coplanar 6s, so they are impossible.
 (ii)(iiii ) would give fewer than 3 edges to j and k, making it impossible.
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 (iii)(ii), (iii)(iii), and (iii)(ii2) are relabeled versions of previous cases.
 (iii)(iiii) has four edges from e, so it is impossible.
 Thus the case F6 = 1 yields Graph 2.
 Case 3: F6 = 2. There are twelve vertices. If the two 6s were disjoint, then they

 would account for all of the vertices, and each 5 would have at least three vertices in
 common with one of the 6s. So the two 6s have one edge in common. Let one of the
 6s be the unbounded face, label it cdes8y, label the other 6 as abcy?a, and let j and
 k be the two remaining vertices. Each 5 has at most two vertices at j and k, so at least
 three vertices on the two 6s together. Accordingly, each 5 has an edge in common with
 each 6. Let F be the third face with vertex c. It may be a 5, a 4, or a 3; it must contain
 b and d, but none of the other vertices on the two 6s.

 If F were a 5, then it would necessarily be bcdjk (or bcdkj, but we may switch the
 labels j and k). Let G be the other face with vertex d; it must contain e and j, but any
 additional vertex would be on four edges, showing that G is edj. Similarly, the third
 face with vertex b must be abk. The other face at e would necessarily contain eejkaa
 and be a 6. So this case (F is a 5) is impossible.

 If F is a 4, then it is bcdj (or bcdk, but we may switch the labels j and k). Let G
 be the third face at b, which must contain a and j but neither d nor a. If G is a 5, then
 it has an edge in common with the unbounded 6. If that edge were s8 then e would
 be on only two edges. It follows that the edge is es and G is 5 labeled ejbas, which
 forces the face dej. Call this possibility (i). If G is a 4, then it is ejba (which would
 give too many edges to e) or kjba (which would imply kjde and give three 4s). If G
 is a 3, then it is abj, which case is seen to be symmetric by exchanging the two 6s to
 case (i) treated earlier.

 If F is a 3, then it is bed. Any face G that contains bd must contain a and e, but
 none of the other vertices of the 6s. If G is a 5, then it could be abdes or abdeot, both

 of which would leave a vertex with only two edges, or abdej (or abdek). Call this
 possibility (ii). If G is a 4, then it is abde. Call this possibility (iii).

 Therefore, starting with vertex c we have three possibilities: (i) bcdj, ejbas, dej,
 (ii) bed,abdej, and (iii) bed, abde. Similarly, starting from y we are no longer free
 to switch the labels j and k or to switch the two 6s, so we get these possibilities:
 (ii) ?y8j, sj?ae, 8sj, (i2) ?y8k, sk?ae, 8sk, (i3) 8y?j, aj8sa, ?aj, (i4) 8y?k,
 uk8sa, ?ak, (iii) ?y8, a?8sj, (ii2) ?yS, a?8sk, and (iiii) ?y8, a?8s. Next we must
 pair each of the three possibilities in the first list with each of the seven possibilities in
 the second list.

 The pairings (i)(ii), (i)(i3), (i)(iii), and (ii)(iii) leave j with too many edges, so they
 are impossible.

 The pairing (i)(i2) crosses ae and as, so it is impossible.
 (i)(i4) yields Graph 3.
 (i)(ii2) and (i)(iiii) leave s with too many edges, so they are impossible.
 (ii)(ii2) leaves j and k with two edges, which must be joined with an edge and yield

 Graph 4.
 (ii)(iiii) leaves k with no edges and j with only two edges, so it is impossible.
 (iii)(iiii) leaves k and j with no edges, so it is impossible.
 Thus the case F6 = 2 yields Graph 3 and Graph 4.
 Sufficient conditions. We must also show that each of the four graphs pictured ac

 tually corresponds to a geometric polyhedron. For Graph 1, truncate a tetrahedron at
 two vertices. For Graph 2, begin with a triangular prism and truncate it at two diago
 nally opposed vertices of a quadrangular face. For Graph 3, begin with Graph 2 and
 truncate it at a vertex where a triangle, quadrilateral, and pentagon meet. For Graph 4,
 truncate a cube at two vertices with a common edge.
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 Editorial comment. Some solvers presented the following generalization: If d is an
 integer greater than I, then there are a finite number of polyhedra (up to placement
 of vertices) such that no d + 1 faces have the same number of edges. References pro
 vided: A. J. W. Duijvestijn & P. J. Federico, "The Number of Polyhedral Graphs,"

 Math. Comput. 37 (1981), 523-532; P. Engel, "On the Enumeration of Polyhedra,"
 Discrete Math. 41 (1982), 215-218; G. M. Zeigler, Lectures on Polytopes (Springer
 Verlag, 1998).

 Also solved by S. Amghibech (Canada), R. Chapman (U. K.), D. Donini (Italy), C. C. Heckman, L. Zhou, and
 the GCHQ Problem Solving Group (U. K.).

 The Limit of a Set-Valued Process

 11052 [2003, 957]. Proposed by Danrun Huang and Daniel Scully, St. Cloud State
 University, Saint Cloud, MN. Let Vn be the set of all subsets of {1, ... , n], and let
 <?> : Vn -> Vn be given by

 <t>(S) -1 {1}u5 ifl^5'
 K ' ~\ {1,... , n}\{k - 1 : k e 5 and k > 1} if 1 e S.

 Let M(S) denote ^AeS fc. Given that n is a positive integer and that S G V?, prove that
 the following limit exists, and evaluate it:

 lim -J^M(<i>J(S)).

 Solution by Achava Nakhash, Torrance, CA. The limit is (n + l)2/4 when n is odd and
 (n2 + 2n + 2)/4 when n is even.

 Given n, let 5* = {n - 2/ : 0 < i < |n/2J}. We show first that for each S in P?
 the process reaches S*. Call each iteration when 1 is added a unit step, and call the
 other iterations sliding steps. Each unit step is followed by a sliding step, after which
 n is present. Unit steps do not affect the presence of any number other than 1, so n
 remains after it first appears. The next sliding step eliminates n ? 1 (if present), after
 which it cannot reappear. After the next sliding step, n ? 2 is present, and then n ? 3
 is eliminated. By repeating this argument we arrive at 5*.

 Since <$>(S*) = S* when n is odd, in this case the limit is M(S*), which equals (n +
 l)2/4. When n is even, M(S*) = 5* U {1} and M2(S*) = S*, so the limit is ?[M(S*) +

 M(5* U {1})], which equals (n2 + 2n + 2)/4.

 Editorial comment. The published problem had "5 is a nonempty subset of P" instead
 of S e Vn. Here "subset" should be "element," the subscript "n" should be present, and
 the exclusion of 0 is unnecessary, since <E>(0) = {1}. Uros Milutinovic expressed the
 process numerically, viewing S as the binary expansion of an integer, and generalized
 the result in that setting.

 Also solved by R. A. Agnew, S. Amghibech (Canada), R. B. Bagley, D. Beckwith, P. Budney, J. Caffrey
 & R. Jayne, P. P. D?lyay, R. DiSario, M. Dolatabady (Iran), D. Donini (Italy), N. Dukich, J.-P. Grivaux
 (France), E. A. Herman, J. H. Lindsey II, O. P. Lossers (Netherlands), U. Milutinovic (Slovenia), D. K. Nester,

 G. Raduns, M. Reyes, M. Spivey, N. C. Singer, R. Stong, L. Zhou, BSI Problems Group (Germany), the GCHQ

 Problem Solving Group (U. K.), NSA Problems Group, University of Louisiana-Lafayette Math Club, and the
 proposers.
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