413

Proc. of

SECOND INTERNATIONAL CONFERENCE ON GROUP THEORY.

THE TOPOLOGY OF FREE PRODUCTS

OF TOPOLOGICAL GROUPS.

Springer Springer Lecture Note n M. 45 372,504-515

by -

Sidney A. Morris,

University of New South Wales,

Kensington, N.S.W., 2033.

Australia.

Edward T. Ordman*,

University of Kentucky,

Lexington, Kentucky, 40506.

U.S.A.

H.B. Thompson,

Flinders University of South Australia,

Bedford Park, S.A., 5042.

Australia.

1. INTRODUCTION.

In [3], Graev introduced the free product of Hausdorff topological groups G and H (denoted in this paper by G.M. H) and showed it is algebraically the free product G*H and is Hausdorff. While it has been studied subsequently, for example [4,6,7,8,11,12], many questions about its topology remain unsolved. In particular, partial negative results about local compactness were obtained in [7,11,12]. In this paper we obtain a complete solution by showing that G.M. H is locally compact if and only if G.H and G.M. H are discrete. A similar line of reasoning allows us to show that G.M. H has no small subgroups if and only if G and H have no small subgroups.

We are able to obtain much stronger results when C and H are k_ω -spaces. a class of spaces which includes, for example, all compact spaces and all

^{*}This research was done while this author was a visitor at the University of New South Wales, partially supported by a Fulbright-Hays grant.

connected locally compact groups. In this case we are able to show that the cartesian subgroup, $gp[G,H] = gp\{g^{-1}h^{-1}gh:g \in G, h \in H\}$, of GL H is a free topological group, show that certain subgroups of GL H are themselves free products, and show that the topology of GL H depends only on the topologies and not on the algebraic structure of G and H.

2. DEFINITIONS AND PRELIMINARIES.

If X is a completely regular Hausdorff space with distinguished point e, the (Graev) <u>free topological group on X</u>, FG(X), is algebraically the free group on $X\setminus\{e\}$, with e as identity element and the finest topology making it into a topological group and inducing the given topology on X; by [2], FG(X) is Hausdorff.

If G and H are topological groups, their <u>free product</u> G# H is a topological group whose underlying abstract group is the algebraic free product G*H and whose topology is the finest topology making it into a topological group and inducing the given topologies on G and H; by [3], if G and H are Hausdorff then G# H is Hausdorff.

For the remainder of the paper all topological groups and spaces will be presumed Hausdorff.

A topological group is said to be <u>NSS</u> (or to have no small <u>subgroups</u>) if there is a neighbourhood of the identity e which contains no subgroup other than {e}. This property is most important for locally compact groups in that Hilbert's fifth problem yields that a locally compact group is a Lie group if and only if it is NSS.

We require the following algebraic preliminaries: The identity map $G \to G$ and the trivial map $H \to \{e\} \subseteq G$ extend simultaneously to a homomorphism $\pi_1: G^*H \to G$; by [3], this is also a continuous map from G. Here G is similarly $\pi_2: G^*H \to H$ is a homomorphism and a continuous map on G. Here G is map $\pi_1 \times \pi_2: G^*H \to G \times H$ has kernel gp[G,H], where $[G,H] = \{g^{-1}h^{-1}gh: g \in G, h \in H\}$. Indeed gp[G,H] is a free group with free basis $[G,H] \setminus \{e\}$. We find it convenient below to introduce a map $g: G \times H \to \{G,H\}$ given by $g(g,h) = \{g,h\} = g^{-1}h^{-1}gh$. If w is any element of g^*H it has a unique representation $g = g^{-1}h^{-1}gh$. If w is any element of g^*H it has a unique representation $g = g^{-1}h^{-1}gh$. If w is any element of g^*H it has a unique representation $g = g^{-1}h^{-1}gh$. If w is any element of g^*H it has a unique representation $g = g^{-1}h^{-1}gh$. If w is any element of g^*H it has a unique representation $g = g^{-1}h^{-1}gh$. If w is any element of g^*H it has a unique representation $g = g^{-1}h^{-1}gh$. If w is any element of g^*H it has a unique representation $g = g^{-1}h^{-1}gh$. If w is any element of g^*H it has a unique representation $g = g^{-1}h^{-1}gh$. We define a map $g = g^{-1}h^{-1}gh$. We define a homomorphism. Finally we note that there is a bijection (not a homomorphism) $g = g^{-1}h^{-1}gh$. $g = g^{-1}h^{-1}gh$. The inverse map is $g = g^{-1}h^{-1}gh$. The inverse map is $g = g^{-1}h^{-1}gh$.

In §4 we use some additional machinery, that of k_{ω} -spaces; we rely heavily on [4]. A topological space X is said to be a k_{ω} -space with decomposition $X = \cup X_n$, if X_1, X_2, \ldots are compact subsets of $X, X_n \subset X_{n+1}$ for all $n, X = \cup X_n$ and the X_n determine the topology on X in the sense that n=1 a subset A of X is closed if and only if A $\cap X_n$ is compact for all n.

The decomposition $X = \cup X_n$ is

essential, in that X may be a union of some other ascending chain of compact subsets which fail to determine the topology. If $X = \cup X_n$ and $Y = \cup Y_n$ where where X_n and Y_n are ascending chains of compact sets, the two ascending chains determine the same topology on X provided each X_n is contained in some Y_k and each Y_n is contained in some X_m .

If G is a topological group and a k_o-space the decomposition $G = \cup G_n \text{ may be chosen so that the } G_n \text{ satisfy two additional conditions:}$ if $g \in G_n$ then $g^{-1} \in G_n$, and if $g \in G_n$, here $g^{-1} \in G_n$ then $g^{-1} \in G_n$, and if $g \in G_n$, here $g^{-1} \in G_n$ then $g^{-1} \in G_n$.

If X is any subset of a group G, we let $\mathrm{gp}_n(X)$ denote the set of elements of G which are products of at most n elements of X. Hence $\mathrm{gp}_n(G_n) \subset G_n^2$.

The class of topological groups which are k_ω -spaces is large enough to include many of the standard examples; in particular, every connected locally compact group is a k_ω -space [12].

It follows that if $X = UX_n$ is a k_ω -space then FG(X) is a k_ω -space with decomposition $FG(X) = Ugp_n(X_n)$. If $G = UG_n$ and $H = UH_n$ are k_ω -spaces then G H is a k_ω -space with decomposition G H = $Ugp_n(G_nUH_n)$.

Finally note that when we say that a continuous map $f:X \to Y$ of topological spaces is <u>quotient map</u> we mean that Y has the finest topology for which f is continuous; this is equivalent to requiring that $A \subset Y$ is closed whenever $f^{-1}(A)$ is closed in X.

3. RESULTS FOR GENERAL TOPOLOGICAL GROUPS.

We begin with a few words about Graev's proofs of the existence of free topological groups and free products of topological groups.

Let X be a completely regular space and e a distinguished point of X. Let G(X) be the free group on the set $X\setminus\{e\}$, with e as the identity element of the group. Let $X' = X \cup X^{-1}$. Being completely regular, the topology of X is defined by a family of pseudometrics. Let p be a continuous pseudometric on X. Graev extended p to a two-sided invariant pseudometric on G(X) as follows: Extend ρ to X' by setting $\rho(x^{-1}, y^{-1}) = \rho(x, y)$ and $\rho(x^{-1},y) = \rho(x,y^{-1}) = \rho(x,e) + \rho(y,e)$ for x and y in X. For u and v in G(X) we have an infinity of representations $u = x_1 \dots x_n$, $v = y_1 \dots y_n$. where x_i and $y_i \in X^i$. Extend ρ to G(X) by setting $\rho(u,v) = \inf \left(\sum_{i=1}^{\infty} \rho(x_i,y_i) \right)$, where the infimum is taken over all representations $u = x_1 ... x_n$ and $v = y_1 \dots y_n$. The family of all such two sided invariant pseudometrics on G(X) yield a topological group $F_S(X)$. (It is shown elsewhere that $F_S(X)$ is the free topological SIN group on X.) Now F_c(X) is Hausdorff; FG(X) is the group G(X) with the finest Hausdorff topology inducing the original topology on X. This topology FG(X) is in general [10] a finer topology than $F_{g}(X)$.

Next we let G and H be topological groups. Graev defined a topology τ (not the free product topology, in general) on G*H using the map $p:G \times H \times gp[G,H] \rightarrow G*H$. The method requires us to topologize gp[G,H] in some way and then topologize G*H to make the map ρ a homeomorphism. Since p is not a homomorphism it must be checked that this topology τ on G*H is a group topology. (This is in fact quite difficult but our brief

comments suppress this difficulty.) Let ρ_G and ρ_H be continuous right invariant pseudometrics on G and H respectively. Define a pseudometric ρ_{GH} on [G,H] by

$$\rho_{\text{GH}}(g_{1}^{-1}g_{1}^{-1}g_{1}h_{1},g_{2}^{-1}h_{2}^{-1}g_{2}h_{2}) = \min[\min(\rho_{\text{G}}(g_{1},e),\rho_{\text{H}}(h_{1},e)) + \min(\rho_{\text{G}}(g_{2},e),\rho_{\text{H}}(h_{2},e)); \\ \rho_{\text{G}}(g_{1},g_{2}) + \rho_{\text{H}}(h_{1},h_{2})]$$

The family of all such ρ_{GH} gives rise to a completely regular topology on [G,H]. Next, noting that gp[G,H] is a free group on [G,H]\(\(\begin{align*}e\)\), we topologize gp[G,H] by putting $(gp[G,H],\tau_1) = F_s[G,H]$. Finally we define the topology τ on G*H by making

p:G × H × (gp[G,H],
$$\tau_{\gamma}$$
) \rightarrow (G*H, τ) a homeomorphism.

Thompson [13] showed that $F_S(X)$ is NSS if and only if X admits a continuous metric. (Thompson's result is stronger than that of Morris and Thompson [9] which showed that FG(X) is NSS if and only if X admits a continuous metric.)

Now if G is NSS, then G admits a continuous metric [9]; so if G and H are NSS, then $G \times H$ admits a continuous metric. Thus [G,H] with the pseudometric topology described above a mits a continuous metric. Hence $F_{S}[G,H]$ is NSS if G and H are NSS. We are now able to prove the following Theorem:

THEOREM 1. G. H is NSS if and only if G and H are NSS.

Proof. If G# H is NSS then any subgroup must be NSS. In particular, G and H must be NSS.

If G and H are NSS, then the above discussion yields that $F_s[G,H]$ is NSS. We shall prove that (G^*H,τ) is NSS, as then G H which has the

same algebraic structure but a finer topology will still be NSS. Suppose that (G^*H,τ) , which is homeomorphic to $G\times H\times F_S[G,H]$, fails to be NSS. Let N and M be neighbourhoods of e in G and H, respectively, which contain no non-trivial subgroups. Then π_1^{-1} (N)o π_2^{-1} (M) is a neighbourhood of e in (G^*H,τ) . Let A be a subgroup contained in π_1^{-1} (N) o π_2^{-1} (M). Since π_1 is a homomorphism and π_1 (A) < N we must have π_1 (A) = e. Similarly π_2 (A) = e. Thus A < $F_S[G,H]$ < (G^*H,τ) . Since $F_S[G,H]$ is NSS, A = {e}, as desired.

- Remarks. (1) This theorem generalizes the main result of [8] which says that if G and H are connected locally compact groups then G. H is NSS when and only when G and H are Lie groups.
- (2) Note that the proof of Theorem 1 actually yields: (G*H, τ) is NSS if and only if G and H are NSS.

The fact that $(G*H,\tau)$ is homeomorphic to $G\times H\times gp[G,H]$ leads us to ask if a similar result is true for $G \perp\!\!\!\!\perp H$. It is!

THEOREM 2. If gp[G,H] is topologized as a subset of $G \coprod H$, then $G \coprod H$ is homeomorphic to $G \times H \times gp[G,H]$ (the homeomorphism is given by the map p).

Proof. Since G H is a topological group, the product map (G H H) \times (G H H) \times (G H H) \times (G H H) \times G H H, given by (g,h,k) \rightarrow ghk is continuous, and so is its restriction p:G \times H \times gp[G,H] \rightarrow G H H. We must show that the inverse map is continuous. The maps π_1 :G H H \rightarrow G and π_2 :G H H \rightarrow H are continuous, so $\pi_C(w) = \pi_2(w)^{-1}$ $\pi_1(w)^{-1}$ w is a product of continuous maps and thus continuous. Hence the map $w \rightarrow (\pi_1(w), \pi_2(w), \pi_3(w)) = (g,h,k)$ is continuous, completing the proof.

is not a locally compact space or a complete metric space unless G and H are both discrete. (Of course if G and H are discrete, G H H is also discrete, and consequently locally compact and complete metric.)

Proof. Suppose G.4 H is a locally compact space or a complete metric space; then so is the closed subgroup gp[G,H]. But as gp[G,H] is algebraically a free group it follows from Dudley [1] that gp[G,H] is discrete. Now G is easo discrete: for if $\{g_{\delta}\}$ is a non-constant net converging to g ϵ G and h ϵ H\(\epsilon\), then $\{[g_{\delta},h]\}$ is a non-constant net converging to [g,h] in gp[G,H], which is impossible. Similarly H is discrete. Finally we see

Remark. Theorems 2 and 3 hold (with the same proofs) for any group topology μ on G*H for which the projections $\pi_1:(G^*H,\mu)\to G$ and $\pi_2:(G^*H,\mu)\to H$ are continuous and which induce the given topologies on G and H. Thus it would be of interest to answer:

Question 1. Is there any group repole; μ on G*H such that either projection $\pi_1:(G*B,\mu)\to G$ or $\pi_2:(G*H,\mu)\to H$ is discontinuous?

If continuity of π_1 and π_2 (build be shown even under the hypothesis that G, if and (G^*h, π) are locally compact, we could conclude that no group copology on an algebraic free product is locally compact (except trivially).

What is the topology that g_{i} G,H] receives as a subset of G# H? It is natural to hope that it has a thee topological group topology, on an appropriate topology for [G,H].

- Question 2. (a) Does the topology induced on gp[G,H] as a subgroup of $G \coprod H$ make it the free topological group FG[G,H]?
- (b) Is the topology induced on [G,H] as a subset of G#H H, the same as the quotient topology under the map $G \times H \to [G,H]$ given by $(g,h) \to [g,h]$?

We have already noted that Graev's topology $F_S[G,H]$ is not, in general, FG[G,H]. Example 1 in §5 shows that 2(b) is also false for Graev's topology; that is, Graev does not give [G,H] the quotient topology. On the other hand we will answer both 2(a) and 2(b) affirmatively when G and H are k_w -groups.

4. RESULTS FOR GROUPS WHICH ARE k_{ω} -SPACES.

We begin by answering Question 2(b) for this case.

THEOREM 4. Let G and H be topological groups which are k_{ω} -spaces. Then $c:G \times H \to [G,H] \subset GM$ H is a quotient map.

Proof. Let the k_-space decompositions of G and H be $G = \cup G_n$ and $H = \cup H_n$. In view of the Proposition stated in §2 G H H is a k_-space with decomposition $G H = \cup G_n \cup H_n$. (Thus a set A is closed in $G H = \cup G_n \cup H_n$) if A $\cap \operatorname{gp}_n(G_n \cup H_n)$ is compact for all n, where $\operatorname{gp}_n(G_n \cup H_n)$ is the set of elements of G H H which are products of at most n elements of $G \cup H_n$; it is compact in $G H = \cup G_n \cup G$

Now let $A \in [G,H]$ be such that $e^{-1}(A)$ is closed in $G \times H$. We must show A is closed in [G,H]. It will suffice to show A is closed in

G.M. H. We shall prove that A \cap gp_n(G_n \cup H_n) = c(c⁻¹(A) \cap (G₂ \times H₂)) \cap gp_n(G_n \cup H_n); as the right hand side is the intersection of a continuous image of a compact set with a compact set it is compact.

If n < 4, both sides are trivial, so assume $n \ge 4$. Now if $w \in \operatorname{gp}_n(G_n \cup H_n)$, $w = x_1 \dots x_n$, with $x_i \in G_n$ or H_n ; in reduced form $w = g^{-1}h^{-1}gh$, so clearly g is a product of at most n terms from G_n ; hence $g \in G_2$. Similarly $h \in H_2$. Since w = c(g,h) we have that $w \in c(c^{-1}(A) \cap (G_2 \times H_2))$. The other inclusions needed are easy. Hence $h \cap gp_n(G_n \cup H_n)$ is compact for all n, and $h \cap gp_n(G_n \cup H_n)$ is compact for all n, and $h \cap gp_n(G_n \cup H_n)$ is compact for all n, and $h \cap gp_n(G_n \cup H_n)$ is compact for all n, and $h \cap gp_n(G_n \cup H_n)$ is compact for all n, and $h \cap gp_n(G_n \cup H_n)$ is compact for all n, and $h \cap gp_n(G_n \cup H_n)$ is compact for all n, and $h \cap gp_n(G_n \cup H_n)$ is compact for all n, and $h \cap gp_n(G_n \cup H_n)$ is compact for all n, and $h \cap gp_n(G_n \cup H_n)$ is compact for all n, and $h \cap gp_n(G_n \cup H_n)$ is compact for all n, and $h \cap gp_n(G_n \cup H_n)$ is compact for all n, and $h \cap gp_n(G_n \cup H_n)$ is compact for all $h \cap gp_n(G_n \cup H_n)$.

Note that it follows from the proof of Theorem 4 that [G,H] is closed in G1LH. We now turn to Question 2(a).

THEOREM 5. Let G and H be topological groups which are k_-spaces. Then the topology on gp[G,H] as a subgroup of G.W. H is the free topological group topology FG[G,H].

<u>Proof.</u> Again let $G = \cup G_n$ and $H = \cup H_n$ be k_ω -space decompositions. Then $G = H = \cup \operatorname{gp}_n(G_n \cup H_n)$ and $[G,H] = \cup (\{G,H\} \cap \operatorname{gp}_n(G_n \cup H_n))$ are k_ω -space decompositions.

Now from the Proposition given in §2, FG[G,H] is a $k_{\mbox{$\omega$}}\text{-space}$ with decomposition

$$\begin{split} & \text{FG[G,H]= ugp}_n([\text{G,H}] \, \cap \, \text{gp}_n(\text{G}_n \, \cup \, \text{H}_n)). \quad \text{On the other hand, gp[G,H]is a closed} \\ & \text{subgroup of G.} \text{\mathcal{H} } \text{H and hence a k}_{\omega}\text{-space with decomposition} \\ & \text{gp[G,H]= $U(\text{gp[G,H]} \, \cap \, \text{gp}_n(\text{G}_n \, \cup \, \text{H}_n))$.} \end{split}$$

Clearly each $\operatorname{gp}_n([G,H] \cap \operatorname{gp}_n(G_n \cup H_n))$ is contained in $\operatorname{gp}[G,H] \cap \operatorname{gp}_k(G_k \cup H_k)$, for $k=n^2$; we must show for each n there is an m such that $\operatorname{gp}[G,H] \cap \operatorname{gp}_n(G_n \cup H_n) \subset \operatorname{gp}_m([G,H] \cap \operatorname{gp}_m(G_m \cup H_m))$.

Let $w \in gp[G,H]_{\Omega} gp_n(G_n \cup H_n)$. Without loss of generality suppose $n \geq 4$ and write $w = g_1h_2g_3...g_{n-1}h_n$, each $g_i \in G_n$ and each $h_i \in H_n$. We shall discuss a way of writing w as a product of commutators.

$$\begin{aligned} \mathbf{w} &= \mathbf{g}_{1}^{h} \mathbf{2} \mathbf{g}_{3}^{h} \mathbf{h}_{4} \cdots \mathbf{g}_{n-1}^{h} \mathbf{h}_{n} \\ &= [\mathbf{g}_{1}^{-1}, \mathbf{h}_{2}^{-1}] \mathbf{h}_{2} (\mathbf{g}_{1} \mathbf{g}_{3}) \mathbf{h}_{4} \cdots \mathbf{g}_{n-1}^{h} \mathbf{h}_{n} \\ &= [\mathbf{g}_{1}^{-1}, \mathbf{h}_{2}^{-1}] [(\mathbf{g}_{1} \mathbf{g}_{3})^{-1}, \mathbf{h}_{2}^{-1}]^{-1} (\mathbf{g}_{1} \mathbf{g}_{3}) (\mathbf{h}_{2} \mathbf{h}_{4}) \mathbf{g}_{5} \cdots \mathbf{g}_{n-1}^{h} \mathbf{h}_{n} \\ &= [\mathbf{g}_{1}^{-1}, \mathbf{h}_{2}^{-1}] [(\mathbf{g}_{1} \mathbf{g}_{3})^{-1}, \mathbf{h}_{2}^{-1}]^{-1} [(\mathbf{g}_{1} \mathbf{g}_{3})^{-1}, (\mathbf{h}_{2} \mathbf{h}_{4})^{-1}] \cdots (\mathbf{g}_{1} \cdots \mathbf{g}_{n-1}) (\mathbf{h}_{2} \cdots \mathbf{h}_{n}). \end{aligned}$$

The last line has n-3 commutators. Since $\pi_1(w) = \pi_2(w) = e$ we see that $g_1 \dots g_{n-1} = h_2 \dots h_n = e$. So w is a product of n-3 commutators $[g,h]^{\pm 1}$, where each g is a product of at most n factors from G_n and hence lies in $C_n = \frac{1}{n^2}$. Similarly for h. So for any $m \ge n^2$ we have

[g,h] \in [G,H] \cap gp_m(G_m \cup H_m) and

w ϵ gp_m ([G,H] \cap gp_m(G_m \cup H_m)), as desired. Thus the topologies of FG[G,H] and gp[G,H] are the same, completing the proof.

Remark. It follows that if G and H are topological groups and k_w-spaces, G H contains a free topological group FG[G,H] on a k_w-space [G,H]. In this case we can draw somewhat stronger conclusions than Theorem 3; for instance, GH H is (except trivially) not metrizable and not SIN. (A topological group is said to be a SIN group if every neighbourhood of e contains a neighbourhood of the identity invariant under inner automorphisms of the group.) This leads us to ask

Question 4. If G and H are topological groups, at least one of which is not a discrete space, can GH H be (a) metrizable or (b) a SIN group?

By methods exactly similar to those used in Theorem 5 we obtain THEOREM 6. Let G and H be topological groups which are k_w-spaces; let A be a closed subgroup of G and B be a closed subgroup of H. Then the of subgroup GAL H generated by A U B is closed and is (topologically and algebraically) ALL B.

For general G and H, A and B closed does imply that the group generated by A \cup B in G.L. H is closed; this however requires a careful examination of the Graev topology (G*H, τ) introduced before Theorem 1. It does not provide an answer to:

Question 5. Let G and H be topological groups and A and B closed subgroups of G and H respectively. Let $gp(A \cup B)$ denote the subgroup of GH H generated by A \cup B. Algebraically it is A*B. Is $gp(A \cup B)$ the topological free product AH B?

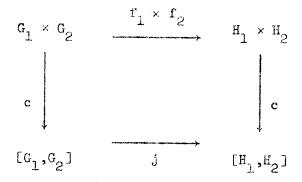
It is natural to ask whether the topology of G # H depends only on the topologies of G and H or also on the group structures. One may be inclined to conjecture that if $f_1:G_1\to H_1$ and $f_2:G_2\to H_2$ are homeomorphisms, perhaps a homeomorphism $f_1*f_2:G_1*G_2\to H_1*H_2$ can be constructed by letting $f_1*f_2(r_1s_1...r_ns_n)=f_1(r_1)$ $f_2(s_1)...f_1(r_n)$ $f_2(s_n)$, where $r_i\in G_1$ and $s_i\in G_2$. This fails in general. For instance, if $\{s_6\}$ is a net converging to e in G_2 , $f_2(e)=e$ and r_1 and r_2 are elements of G_1 with $f_1(r_1)$ $f_1(r_2)\neq f_1(r_1r_2)$, then

$$\begin{split} &\lim_{t \to t_2} f_2(r_1 s_\delta r_2) = \lim_{t \to t_1} f_1(r_1) \ f_2(s_\delta) \ f_1(r_2) = f_1(r_1) \ f_1(r_2) \\ &\text{while } f_1 * f_2(\lim_{t \to t_2} r_2) = f_1 * f_2(r_1 r_2) = f_1(r_1 r_2) \neq f_1(r_1) \ f_1(r_2), \\ &\text{so } f_1 * f_2 \text{ is discontinuous.} \end{split}$$

In the $\mathbf{k}_{\omega}\text{-space case, another approach succeeds:}$

THEOREM 7. Let G_i and H_i be topological groups which are k_i -spaces, for i = 1, 2. If G_i is homeomorphic to H_i , i = 1, 2 then $G_1 \coprod G_2$ is homeomorphic to $H_1 \coprod H_2$.

Proof. As G_1^{IL} G_2 is homeomorphic to $G_1 \times G_2 \times FG[G_1,G_2]$ and H_1^{IL} H_2 is homeomorphic to $H_1 \times H_2 \times FG[H_1,H_2]$ and as FG(X) and FG(Y) are homeomorphic if X and Y are homeomorphic (independent of the choice of basepoints) it will suffice to show that $[G_1,G_2]$ is homeomorphic to $[H_1,H_2]$. Let $f_i:G_i \to H_i$ be a homeomorphism for i=1,2; since topological groups are homogeneous, we may assume that the f_i have been chosen so that $f_i(e) = e$ for each i. Hence the diagram



is commutative, where $j([g_1,g_2])=[f_1(g_1),f_2(g_2)]$, and as each vertical map is a quotient map, j is a homeomorphism. This completes the proof.

In view of this it appears that general solutions to Question 2(a) and 2(b) would allow a general solution of:

Question 6. Let G_i and H_i be topological groups for i=1,2. If G_i is homeomorphic to H_i for i=1,2 is G_1H_i G_2 necessarily homeomorphic to H_1H_2 ?

It was shown in Ordman [12] that if G and H are arcwise connected topological groups, then the fundamental group

$$\pi(G\mathcal{L}H) = \pi(G \times H) \times L \neq \pi(G) \times \pi(H) \times L$$

for some group L. It was conjectured that L is always trivial. We now see that $\pi(G \perp \!\!\!\! L H) = \pi(G) \times \pi(H) \times \pi(gp[G,H])$, where gp[G,H] has the induced topology from G H. Further if G and H are k_-spaces, then

$$\pi(G \mathcal{L} H) = \pi(G) \times \pi(H) \times \pi(FG[G, H]).$$

So the group L has now been identified. However we have been unable to prove that $\pi(\text{FG[G,H]})$ is trivial in any case other than the one covered $f_{(1)}$ [12]; that is, when G and H are countable CW-complexes with exactly one-sore-cell. It seems reasonable to conjecture that if G and H are simply connected then $\pi(\text{GLL} H) = \pi(G) \times \pi(H)$. However for this we need to answer

Question 7. If X is simply connected is FG(X) necessarily simply connected? Is it true under the additional assumption that X is a k -space?

5. EXAMPLES.

We conclude by giving two elementary examples which bear on the preceding.

Example 1. The map $c: G \times H \to [G,H] \subset (G^*H,\tau)$ is not a quotient map, in general, where τ is Graev's topology. Let G = H = R, the additive group of reals with the usual topology. Consider the sequence $a_n = (n, \frac{1}{n})$ in $R \times R$. Now $c(a_n)$ converges to e in (R^*R,τ) , for $\rho(c(a_n),e) = \min(|n|,|\frac{1}{n}|) = \frac{1}{n} \to e$,

where ρ is the metric (described in §3) arising from the usual metric on each copy of R. However $c(a_n)$ fails to converge to e in R. R. To see this note that R is a k_n -space with decomposition R = u[-n,n]. Since $\{c(a_k): k=1,2,\ldots\}$ has finite intersection with each $\mathrm{gp}_n([-n,n] \cup [-n,n])$ (here the first $[-n,n] \subset R = G$, the second $[-n,n] \subset R = H$), it is a closed set in RM R and hence does not converge to e.

Since $c(a_n) \in [R,R]$ for all n and e $\in [R,R]$, it follows that [R,R] is topologized differently in $(R*R,\tau)$ than in $R \perp \!\!\!\! \perp R$. Hence answering Question 2 will require more than an appeal to Graev's topology.

Incidentally the above argument also shows that the topology constructed in Ordman [11(I)] also yields a topology on R*R other than the free product topology.

Example 2. While the free product of compact groups is a k_{ω} -space, it is very large. Although every discrete subgroup of a compact group is finite, the free product TL T of two circle groups contains a discrete subgroup which is not even finitely generated. Consider the subgroup $\{e,a\}$ of order 2 of the first factor and the subgroup $\{e,b,b^2\}$ of order 3 of the second factor. The free product $\{e,a\}L$ $\{e,b,b^2\}$ is discrete and by Theorem 6 it is a subgroup of T T. Hence its subgroup $gp[\{e,a\},\{e,b,b^2\}]$, the free group on the two generators x = [a,b] and $y = [a,b^2]$ is discrete. This group in turn contains the free group on the countable set $\{x,yxy^{-1},y^2xy^{-2},\dots\}$.

On the other hand, compact subgroups of T H T are very small.

Every compact subset of T 0 T is contained in some group gp (T 0 T);

that is, has bounded word length. However the only subgroups of T*T with bounded word length are those which are conjugates of subgroups of one of the two factors. Hence every compact subgroup of T# T is either finite, or a conjugate of one of the two factors and hence itself a circle group.

Question 8. What are the locally compact subgroups of T# T?

REFERENCES.

- [1] R.M. Dudley, Continuity of homomorphisms, Duke Math. J. 28(1961), 587-594.
- [2] M.I. Graev, Free topological groups, Izv. Akad. Nauk. SSSR. Ser. Mat. 12 (1948), 279-324 (Russian), English transl., Amer. Math. Soc. Transl. 35 (1951). Reprint, Amer. Math. Soc. Transl. (1) 8 (1962), 305-364.
- [3] _____, On free products of topological groups, Izv. Akad. Nauk. SSSR. Ser. Mat. 14 (1950), 343-354 (Russian).
- [4] J. Mack, S.A. Morris, E.T. Ordman, Free topological groups and the projective dimension of a locally compact abelian group, Proc. Amer. Math. Soc. (to appear).
- [5] A.A. Markov, On free topological groups, C.R. (Doklady) Acad. Sci. URSS (N.S.) 31 (1941), 299-301. Bull. Acad. Sci. URSS Ser. Mat. [Izv. Akad. Nauk. SSSR] 9 (1945), 3-64. (Russiam, English summary.) English transl. Amer. Math. Soc. Transl. 30 (1950), 11-88. Reprint, Amer. Math. Soc. Transl. (1) 8 (1962), 195-272.
- [6] S.A. Morris, Free products of topological groups, Bull. Austral. Math. Soc. 4 (1971), 17-29.
- [7] _____, Local compactness and free products of topological groups I and II, (to appear).
- [8] _____, Free products of Lie groups, (to appear).
- [9] S.A. Morris and H.B. Thompson, Free topological groups with no small subgroups, Proc. Amer. Math. Soc. (to appear).
- [10] , Invariant metrics on free topological groups, Bull. Austral. Math. Soc. 9(1973),83-88.
- [11] E.T. Ordman, Free products of topological groups with equal uniformities I and II, Colloq. Math., (to appear).
- [12] , Free products of topological groups which are k spaces,

 Trans. Amer. Math. Soc. (to appear).
- [13] H.B. Thompson, Remarks on free topological groups with no small subgroups, J. Austral. Math. Soc. (to appear).