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L. INTRCOUCTION.

In [ 3], Graev introduced the free product of Hausdorff topclogical
groups G and H {denoted im this paper by GAL H) and showed it is algebraically
the free product C¥H and is Hausdorif. While it has been studied subsequently,
for example [4,6,7,8,11,12], many ques ions sbout its topology remsin unsolved.
In particular, partial negative resulis about local compactness were obtained
in [7,11.,127. In thisz paper we obtain s complete sclution by showing thsat
G4h B is locally compact if and only i G,H and Gii H are discrete. A similar
line of reésoning allows us to show that Gdb ¥ hes no small subgroups if and
only if G and H have no smail subgroups.

We ares able to obtain much sivonger results when U and H are km—spaces.

a class of spaces which includes, for =xample, all compsct spaces and all

¥This ressarch was dene while this suthor was o visitor at the University of

New South Wales, partially supported by a Fulbright-Hays grant.
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-connected locally compact groups. In this case we are able to show that
the cartesian subgroup, gplG,H] = gp{g’lh_lgh:g € G, h € H}, of GIL H is
a free topological group, chow that certain subgrqups of GJML H are them-
selves free products, and show that the topology of GJAL H depends only on

the topologies and not on the algebraic structure of G and H.

2. DEFINITIONS AND PRELIMINARIES.

If X is a completely regular Hausdorff space with distinguished

point e, the (Graev) free topological group on X, FG(X), is algebraically

the free group on X\{e}, with e as identity element and the finest topology
making it into a topological group and inducing the given topology on X;
by [2], FG{X) is Hausdorff,

I£ G and H are topological groups, their free product GU H is

a topological group whose underlying abstract group is the aléebraic free
product G¥H and whose topology is the finest topology making it into a
topological group and inducing the given topologies on G and H; by [3],
if G and H are Hausdorff then GUL H is Hausdorff.

For the remainder of the paper all topological groups and spaces
will be presumed Hausdorff.

A topological group is said to be NSS (or to have no small

subgroups) if there is a neighbourhood of the identity e whiech contains
no subgroup other than {e}. This property is most important for locally
compact groups in that Hilbert's fifth problem yields that a locally compact

group is a Lie group if and only if it is NSS,
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We reguire the following algebraic preliminaries: The identity
map G > G and the trivial map H » {e} < G extend simultaneously to & homo-
morphism ﬂl:G*H + G3 by [3], this is also a continuous map from GH-H to G
Similarly wz:G*H > H is a homomorphism and a continuous map on G JLH. The
map M, X% W,:G¥H > G x H has kernel gplG,HJ, where [G,H] = {g—lh-lgh:g € G,
h € H}, Indeed gplG,H] is a free group with free basis [G,HI\{e}. We fina
it convenient below to introduce a map c:G X H - [G,H] given by

lh'lgh. If w is any element of G¥H it has a unique

clg,h) = [g,h] = g~
representation w = ghk, where g € G, h ¢ H and k € gp [G,H]. We define a
me.p ﬂc:G*H -+ gplG,Hlby ﬂc(w) =k = ﬂe(w)“l 1rl(w)"l w: notice that it is
not a homomorphism. Finally we note that there is a bijection (not a

homomorphism) p:G .x H % gplG,H] + G¥H given by p(g,h,k) = ghk. The inverse

map is p~t(w) = ("1(")’“2(“)’“.:(“))’

In §% we use some additional machinery, that of kw—spaces; we

rely heavily on [L4]. A topological space X is said to be & k -space with

deccmp051tloz X = an, if Xl,X2,... are compact subsets of X,Xn c Xn+l for
all n, X = u }(v1 and the Xn determine the topology on X in the sense that
n:l Y -

a subset A of X is closed if and only if A n Xn is compact for all n.

The decomposition X = UXn is
essential, in that X may be a union of some other ascending chain of compact
subsets which fail to determine the topeclogy. If X = UXn and Y = uYn where
where Xn &nd Yn are ascending chains of compact sets, the two ascending

chains determine the same topology on X provided each Xn is contained in

some Yk and each ‘x’v1 is contained in some Xm.
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;f G is a topological group and a km—space the decomposition
G = an may be chosen so that the Gn satisfy two additional conditions:
if g € G then g_l € G ,end if g ¢ G, heG then gh € G_,, -

Tf X is any subset of a group G, we let gpn(X) denote the set
of elements of G which are products of at most n elements of X. Hence
gpn(Gn) < Gné'

The class of topological groups which are kmnspaces is large
enough to include many of the standard examples; in particular, every
connected locally compact group is a kw-space riz1l.

We rely heavily on the following result of (43
Proposition. Let G be a topological group and X a subset which generates
G algebraically. Let X = an be a km~spéce. Then G has the finest group
topology consistent with the original topology on X if and only if G is a
k -space with decomposition G = ngn(xn)'

It follows that if X = uX is a k -space then Fo{X) is a k -space
with decomposition FG(X) = ugpn(xn). If G = uG and H = vl are k -spaces

then G H is s kw—space with decomposition G H = ugpn(GnUHn).

Finally ncte that when we say that a continuous map f:X > Y of

topological spaces is guotient map we mean that Y has the finest topology

for which f is continuous; this is equivalent to requiring that A < Y is

-1 . . Ve
closed whenever £ (A) is closed in X.
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3. _RESULTS FCR GENERAL TCPOLOGICAL GROUPS.

We begin with a few words about Graev's proofs of the existence
of free topological groups and free product: of topclogical groups.

Let X be a completely regular spac: and e a distinguished point
of X. TLet G(X) be the free group on the set X\{e}, with e as the identity
element of the group. ILet X' = X u Knl. Being completely regular, the
topology of X is defined by a family of pseudometrics. Let p be a continu-
ous pseudometric on ¥. Graev extended p to a two-sided invariant pseudo-
metric on G(X) as follows: Extend p to X' by setting p(x*l,yﬂl) = p(x,y)
and D(x_l,y) = p(x,y-l) = p(x,e) + p{y,e) for x and y in X. For u and v in

G(X) we have an infinity of representations u = x ...xn, v = yl...yn. where

‘ n
x; and y, ¢ X'. Extend p to G(X) by setting o{u,v) = inf ( £ p(xi,yi)),
i=1

1

where the infimum is taken over all representations u = xl...xn and

v o= yl...yn. The family of all such two sided invariant pseudometrics on
G(X) yield a topological group FS(X). (It is shown elsewhere that FS(X) is
the free topological SIN group on X.) . Now FS(X) is Hausdorff; FG(X)
is the group G(X) with the finest Hausdorff topology inducing the original
topology on X. This topology FG(X) is .n general [10] a finer topology
than FS(X) .

Next we let G and H be topological groups. Graev defined a
topology t (not the free product topology, in genersl) on G¥H using the
map P:G x H x gplG,Hl» G*H. The method veguires us to topologize gp[G,H]
in some way and then topologize G¥H to mske the map p 8 homeomorphism.
Bince p is not a homomorphism it must he checked that this topology T on

G*H is a group topolegy. (This is in feet quite difficult but ocur brief
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comments éuppress this difficulty.) Let g and Py be continuous right

invariant pseudometrics on G and H respectively. Define s pseudometric oeH

on [G,H] by

DGH(g;lg;lglhl,g;lh;lgzhg) = min[min(pG(gl,e},oH(ﬁl,e)) + min{py(g,,e) 0 (hsse))3
pel8 18, + pylhy,hy)]

The family of all such Pox gives risg to a completely regular topology on

[4,4]. Next, noting that gplG,H] is a free group on EG,H]\(e}, we topologize

gplG,H] by putiing (gplG,H3,7;) = F [G,H]. Finally ve define the topology t

cn G¥H by making

p:G x H x (gplG,H],7,) » (G*H,T) a homeomorphism.

Thompson [13] showed that FS(X) is NS3 if and only if X admits a
continuous metric.  (Thompson's result is stronger than that of Morris and
Thompson [9 ] which showed that FG(X) is N3SS if and only if X admits a con-
tinuous metric.)

Now if G is NS5, then G admits a continuous metric 9]y so if G
and H are NSS, then G x H admits a conti mous metric. Thus [G,H] with the
pseudometric topology described above a mits & continuous meﬁric.k Hence
FS[G,H] ig NSS if & and H are N3S. We are now able to prove the following

Theorem:

THEOREM 1. GJi H is NSS if and only if G and H are NSS.

Proof. If GiL H is NSS then any subgroup must be NSS. In particular,
G and H must be NSS.
If ¢ and H are NSS, then the above discussion vields that FQEG,HE

is NSS. We shall prove that (G¥H,t) is WSS, as theu G H which has the
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[G,H] is topologized as_a subset of G4L 1, then GIL H is

homeomorphic to G x H » gplC,H] {(the homeomorphism ig given by the map b).
Proof. Since G 4 iz a topclegicel group, the product map (cdl H) x
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-1 1
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Questiag;g. (a} Does the topology induced orn gr[G,H] as a subgroup of
GAL H make it the free topological group FGLG,HTY

(v) Is the topology induced on [G,H] as a subset of G4k H,
the same as the gquotient topology uader the map G x H » [(G,H] giver by
{g,h) » [g,bl9¢

We have elready noted that Graev's topology FS[G,Hl is not, in

general, FGIG,HI. Example 1 in §5 shows tnat 2{(b) is alsc false for Graev's
topology; that is, Graev does not give [G,H] the quotient topology. Cn the
other hand we will answer both 2(a) and 2(b) affirmatively when G and H are

kwugm ups,

L. RESULTS FOR GROUPS WHICH ARE k -SPACES,

We begin by answering Question 2{b) Ior this case.

THECREM h. Let G and H be topological groups which are km-spaces. Then

e:G x H= [Gi] « 6 H is a quotient map.

Proot. Let the k{~spaee decompositions of G and H be ¢ = an and H = an.

m—— 0 3

In view of the Propogition stated in 3§72 o H is a k -space with deccmposition
. w

Gdk H = ngn(cn U Hn). (Thuz 2 set A is closed in G4 H if and only if

Angp (¢ uH ) is compact for all n, vhere gp (G u H )
n'n n "0t n &

L

is the set of
elements of GIL H which are products of at most n elements of G v H 3

I 1i
it is compact in G4L H.)

—

Now let A = [G,H] be zuch that ¢ (A4) is closed in ¢ x H. We

fd

¢y

o}

must-shadw A is closed in [G,011. It will suffice to show A is closed in
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GdL H. We shall prove that & n gpn(Gn U Hr) = c(c’l(A) n (G 5 H 9))n
' n n"

gpn(Gl u Hr); =8 the right hand side is the intersection of a continuous
I 1
image of a compzct set with s compact set it is compact.

If o < 4, both sides are trivial, so assume n > 4. Now if

wegp (G UH), w=x...%X,withx = C orHj; in reduced form
n 11 n - BR n 1 n I

-1
W =g

[

—.‘ - N
h “gh, so clearly g is a product of at most n terms from Gn; hence

geG . Similarly b € H ,. Since w = c(g,h) we have that
n” 1 n~
wveele (&) nlc,x H ,)). The other inclusions nceded are easy. Hence

n n
A n gpn(Gn u Hq) is compact for sll n, and A is closed, as required.

Note that it follows from the proof of Theorem 4 that [G,H] is

closed in G 1L H. We now turn to Question 2(a).

THEOREM 5. Let G and H be topological groups which are kK -spaces. Then
T [y )

the topology on gplG,Hi as a subgroup of GAb H is the free topological

group topology FGLG,HI.

i

Proof. Again let G = UGU and H an be k -space decompositions. Then
— n w

G H= ugpn{Gn U Hn} and [G,H] = o{{g,H1n gpn(cn U Hn)) are k -~space

H

deconmpositions.

Now from the Proposition given in 82, FG{G,H} is a kw—space with
decomposition
FGLG,H = ngn(ﬁG,H} n gpn(cn U Hn}). Cn the other hand, gplG,Hlis a closed

subgroup of G4 H and hence a km—spac% with decompegition

eplG,H1 = u(gplG,H} n gp (C_ u H ).
n 11 0

13
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Clearly each gpn({G,H] A gpn(Gn U Hn)) is contained in gp[G,H] n
o
gpk(Gk U Hk)’ for k = n°; we must show for each n there is an m such that

gplG,H] nogp (G o H ) < gp ([G.HI nep (G v H )

Let w ¢ gp[C.Hln ap (L

"
U
n

n z 4 and write w = 51h233"'gn—1hn’ each 8.« G and cach h; e Hn' We shall

discuss a way of writing w as & product of comnmutators.

¥ = BhoBahy g 4 by
RS ENCTRE A
= LgIL,hgai(ngg)"l, h;l]—l{glg3?(h2hh) €5+ +Eny Py
= Loy g ey ey ™ n ey ) gy ) ey gy ) (B im ).

¢

The last line has n -~ 3 commutators. Since wl(w) = n?(w) = & we see that
. . +1
818y 4= hq...hn: e. So w is a product of n - 3 commutators lg,hl ™,
- e k

where each g is & product coi at most n factors from Gﬂ and hence lies in C o
| n

2

Simiilarly for h. So for any m 2 n~ we have
Lgonhl ¢ [G,H] n gp (Gm U ﬁm) and

> m

W€ gp ({e,H]1 n gpm(Gm v H )}, as dssived. Thus the topologies

i
of FGLG,H) and gplG,H] are the same, completing the proof.
Remark. It fellows that if G and H are topological groups and kw«spaces,
G H coutains a free topological group FGlG,H5] on a ik ~space [G,H].
In this case we can draw somewhat sircnger conclusions than Theorem 3; for
instance, GiL H is (except trivially) not metrizable and not SIN., (A topo-
logical group is =aid to be o SIN group if every neighbourhood cf e containé
a neighbourhood of the ilderntity inveriant under iloner sutomorphisms of the

group.) This leads us to ask
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Question b, If G and H are topological groups, at least one of which 1is

not a discrete space, can Gib B be (a) metrizable or (b) a SIN group?
By methods exactly similar to thoze used in Theorem 5 we ohtain

THEOREM 6. Let ¢ and H be topological groups which sre k -spaces; let

v
fopSunded )

A be a clossd subgroup of & and B be a clozed subgroup of H, Then the

subgroupAGlL H generated by A u B is closed and is (topologically and

algebraically) A4l B,

For general G and H, A and B closed does imply that the group
generated by A u B in GUL H is closed; this however requires a careful
examinstion of the Graev topology (G*H,t) introduced betrore Theorem 1.

It does not provide an answer to:

Question 5. Let G and H be topological groups end A and B ~losed subgroups
of G and H respectively. Let gp{A u B) denote the subgroup of GilL H gener-
ated by A u B. Algebraically it is A*B. Is gp(A v B) the topological free

product ALL B?

It is natural to ask whether the topolegy of G4& H depends only

bxt

on the topclogies of G and or also on the group structures. One may be

inelined to conjecture that i{ f ot are homeomorphisns,

ped o

<

- H, and {.,:G, ~ U
PN L=

-G
11

can be constructed by lelfling

o - AY ; - . . Y
£ {s ), where r, ¢« &, and 5, € G,.
2 i 1 i 2

fp(e} = e and . and r, are elements of Gl with fl(r y o {r,) #F (rvr23 then
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im F.%f (4 = 1im £.(r.) £ {s.) 1 = 3
lim tl‘fz(rlsérz) Ln £ (r)) £,(s,) 11(r2) £,(r)) £,(x,)

while £ *f (1im r

12 5g7,) = (ryrp) = & (rrp) # 8, (r)) £y (x,),

£oEp
17872 172712
8 * is di 1tin .
0 fl f2 is discontinuous

In the L;mws‘pace case, ancther approach sucgeeds:

THEOREM 7. Let Gi and Hi be topological groups which are kw*spaces, for

i=1,2. If Gi is homeomorphic to Hi, i =1, 2 then Gl.iL.G2 is homeomorphic

to HiJL HQ.

Proof. As GliL Gé is homeomorphic to Gl 3 G2 X FG[Gl,GEJ and HIlL H2 is

homeomorphic to B x H, x FG[HI,HEJ and as “G(X} and FG(Y) are homeomorphic

if X and Y are homeomorphic {independent of the choice of basepoints) it will
Pl 5 t »J 18 homecmorphic to [H, ,H,.7. Let f,:G, .

suffice to show that [Gl,G2] is homeomorphic to [Hl,neJ Le fx Gl +-Hl be

a homeomorphism for i = 1,2; since topological groups are homogeneous, we

may sssume that the fi have been chosen sc that fi(e) = e for each i, Hence

the diagram

1‘4‘ x f 5
G* # GZ ey Hl x H2
[« \i C
Sy
[Gl’GEJ J [ngﬁzj

is commutative, where j ([g,,e,]) = [fl{gl}, fg(gq)], and as each vertiecal
e < <

map is a quotient map, j is a homeomorphism. This completes the proof.

In view of this it appears that genersl solutions to Question 2(a)

and 2(b) would asllow a general solution of:
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Question 6, Let G, and i, be topological groups fer i = 1,2, If Gi is
homeonorphic to Hi for i = 1,2 is G14L G? neceszarily homeomorphic ta ﬂllﬁ ﬂg?
It was shown in Ordman [12] that i7 ¢ ard H are arcwise connected

topological groups, then the fundamental group

w{GIL H) = w(G x ¥) x L = ¢{CG) x w(H) % L

o
t
e
w

for some group L., It was conjectured that alwvays trivial. We how ge¢¢
that n(GLL H) = =n(G) x «w{H) x n(gpla,H]}, where gpl{G,H] has the induncd
topology from G H., Further if G and H are km—s?aces, then

(G H) = () x =(H) x n(FClG,H]).
So the group L has now been identified., However we have been ungble to

prove that n(FGLG,H]) is trivial in any case other than the one coversd i

{12]; that is, when G and K are countable (W-complexes with exactly one-gopo-

. .

cell. It seems reasonable to conjecture that if ¢ and H are simply connectsd
then ={GAL H) = w(G) x n(H). However for this we need to answer

uestion 7. If X is simply connected s PG{X) necessarilv sinply connected’

Is it true under the additional assumption that X is a

e

~gpace?

“w

5. BXAMPLESD,

We conclude by giving two elementary examples which bear on the
pre :f‘?!j(j,ngb
Brample 1. The map 2:G x H > {G,11] ¢ (3*H,1) is not a quoticnt map, in
general, where 1 is Graev's topolugy., Tet G = H = R, the additive group of

reals with the usual topology. Consider the sequence a_ = {n, i@ in B o= R,
_ 1 1
' 3 e v " P . i ! : -
Now c(an; converges to e in (R¥R,t), {or p(c(ap},e) = min (]ng,!ﬁ{) 2 =g

n :
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Y
/

where p it the metric (described iu §3) arising from the usual metric on

each copy of R. However c(an) fails to couverge to e in R R, To see
this note that R is a kwmspace with decompesition R = ul-n,n}. Since
{c(ak):k = 1,2,...) has finite intersection with each gpﬁ({»n,n] g [-n,n})
(here the first [-u,nl ¢ R = &, the second {-n,nj cR = H),it is a closed
set in RAL R and hence does not converge Lo e.

Since ec(a ] ¢ [R,R] for all n and ¢ ¢ (R,R7, it follows that
[R,R] is topologized differently in (R*R,r) than in R R. Hence answering
Question 2 will require more than an appeal to Graev's topology.

Incidentally the above argument slse shows that the topology

constructed in Ordman [11{I)] also yields a topology on R¥R other than the

free product topology.

Fxample 2. While the free product of compact groups is a km~space, it is
very large. Although every discrete subgroup of & compact group is finite,
the free product T4 T of two clrecle groups contains a discrete subgroup

which is not even finitely genersied. Consider the subgroup {e,a} of
, . ; 2 . - )
order 2 of the first factor and the subgroup {e,b,b”} of order 3 of the
. ; . 24 . .
second factor. The free product {e,aldl {e,b,b } is discrete and by
Theorem 6 it is a subgroup of T T. Hence its subproup gpl {e,a},{e,b,b 11,

v . . 2o s s
the free group on the tvwo generaltors x = fa,b] and y = a,b'] is discrete.

-
1
i
i

This group in turn contaias the free group on the counttdble set

(=

. ~l 2 - N
1EYEY 2V XY sevese
‘On the‘otﬁer’handQ'éompact'subgréﬁ@s46?WTJ£?T*aréﬁvéryﬂsmail1

Fvery compaet subset of T ¢ T is contained in some. TOuﬁ'gpﬂ(T U T);
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that is, has bounded word length. However the only subgroups of T*T with
bounded word length are those which are conjugates of subgroups of one of
the two factors. Hence every compact subgroup of TdL T is either finite,

or a conjugate of one of the two factors and hence itself a circle group.

Question 8. What are the locally compact subgroups of i TN
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