et — i 1 st 5 vixanm e

‘Part I:

Writing Transportable
BASIC

Edward T. Ordman
Department of Mathematical Sciences
Mermphis State University

If you think your programs might ever be used

on another computer with a different dialect of BASIC —
the suggestions in this two-part article can go a long
way towards easing the transition. This month the
author covers documentation, vocabulary, and reada-
bility. The article concludes next month with an over-
view of highly machine-sensitive issues such as input-
output and graphics.

So you finally got your own computer. Unfortu-
nately, it is not the same model you had at school.
Or you’ve arrived at high school or college and
the computer there is not the same one that your
junior high school or high school had. What are
you going to do with all the programs you have
accumulated? My own school has just bought
several of the new IBM Personal Computers — but
most of the programs we have on hand were writ-
ten for a mainframe or for our OSI microcom-
puters. Come to think of it, we are changing main-
frames next semester, too!

Of course, all of these machines have a version
of BASIC. (Some of them, in fact, have several
versions of BASIC.) But, as is clear to anyone who
has read a program written in Apple BASIC and
wished he could run it on his Atari (or PET or
TRS-80 or ...), all BASIC interpreters are not the
same.

What is the solution? There is no ideal solu-
tion, for all cases. Some published programs are
difficult to convert from one dialect to another.
We can, however, in writing programs for our-
selves, for friends, and perhaps even for publica-
tion, try to make our programs transportable. That
is, we can write the programs so that they can be
adapted to another machine with a minimum of
difficulty.

Self-documenting

A program is easily transportable from one
machine to another if it can be entered and run in
the second machine with no substantial rewriting
- certainly no changes in the underlying logic or

36 COMPUTE! January, 1983

algorithms — and a minimum of minor changes.
The program should be self-explanatory so that it
can be rewritten without knowledge of the original
machine — a knowledge of the machine we are
rewriting it for should be enough.

I have one fairly complex simulation program
that was first written about 12 years ago for a PDP-
8. It has since been rewritten, by me or by others,
for S-100 bus machines in CBASIC, Apple, TRS-80,
IBM Personal Computers and IBM 370's, Xerox
Sigma 9, PDP-11, and enough other machines
that I have lost count. I suspect that it would have
been forgotten after the second or third transpor-.
tation to a new machine, if it had not been written
so that it was usually just a matter of typing it in
again.)
I should warn you at the outset that all this
article considers is how to write the BASIC pro- -
gram. It does not address the problems of getting
a program from one machine to another without
having to key it in again. Increasingly, it is possible
to connect the two computers over a phone line,
directly or via one of the dial-up timesharing ser-
vices, and move the program as a text file to avoid
retyping. Nevertheless, the focus of this article is
transportable programming techniques. ’

What can you do, when writing a program,
to make it easily transportable? We will divide the
strategy into five main parts: 1) minimal vocabu-
lary; 2) in-program readability; 3) formal struc-
turing; 4) careful attention to input-output; and 5)
limited graphics. : ‘

Minimal Vocabulary

First, let’s consider the question of vocabulary -
what features of BASIC we should use. Appar-
ently, whenever a company produces a new com-
puter or a new version of BASIC, it feels compelled
to add features not found in anyone else’s BASIC.
Often these features are convenient and may make
programming for that machine easier. However,
they make transporting a program much harder.
If at all possible, such features should be avoided
when writing with transportability in mind.

If we must use special features, they should
be isolated in a subroutine near the end of the
program and clearly labelled. The main program
should stick to features found in virtually all ver-
sions of BASIC. This does not mean that string
handling must be restricted to the limitations of
Radio Shack Level 1 BASIC, which is an extreme
example; nor are there universal rules as to what
constructions are allowed. Some textbooks define
“minimal BASIC” or restrict themselves in a
similar way.

Educational institutions often belong to
groups (consortia) which promote standards for
exchanging programs; CONDUIT is one such
educational group with a nice pamphlet on stan-
dard BASIC. If you have worked with several
versions of BASIC, sticking to common features is
a good guide for what will be transportable be-
tween them. For informal use, however, or for
the individual who has just worked on one
machine, here are the standards I have found
useful in working with perhaps a dozen different
machines, large and small.

Variables And Commands

Figure 1 suggests some guidelines for variable
names, numbers, line numbers, DIM statements.
Clearly, the list could be made much longer. For
instance, how big can a real number be and not
overflow? How small can a positive number be
and still be distinguished from zero? Most BASIC
programs do not depend critically on these figures,
which may differ dramatically from one system to
another.

If your program does depend on them, you
should probably make this explicit (and include a
REMark giving the limits on your system). For
instance, if your program has a variable X that
gets closer and closer to zero as you go around a
loop, and you exit the loop by testing IF X=0
THEN ..., the program may behave very differ-
ently or even fail on another computer. Changing
this to

500 IF ABS(X) <1E-50 THEN ... : REM USE A SMALL
NON-ZERO NUMBER

38 COMPUTE! Jonuary,1983

will make the program transportable: the person
converting it can check to see if the new computer
will accept 1E-50. If it will not, he can substitute
an acceptable number, e.g., 1E-30. '

C
Gi
he
ar
fr
g
(o
St
Figure 2 shows a limited list of BASIC com- w

mands — a very limited list. While almost every :‘Z

BASIC accepts more commands than these, they

differ on which statements those are. For each

command not on this list, there is some computer

around that will not accept it. To make matters
worse, computers differ substantially in how they
interpret some of these commands. Some, for
instance, do strange things on a STOP but allow
END only as the last line of a program. The cure:
place 9999 END as the last line of the program,
and terminate anywhere else by GOTO 9999.

GOTO and GOSUB should be followed just
by a line number. GOTO 500 is fine; avoid GOTO
A even if your computer likes it. In the statement
FOR X=A TO B STEP C, it is best to restrict A, B,
and C to integers (or expressions evaluating to
integers) and to avoid changing them inside the
loop. NEXT must name just one variable for the
corresponding FOR, e.g., NEXT X.

IF... THEN statements require special atten-
tion, since so many computers have so many dif-
ferent extensions. A few computers accept only
statements such as IF Y> =Z THEN 830, prohib-
iting calculations, logical operations, and not al-
lowing anything but a line number after THEN. I
am not seriously suggesting that you keep things
this simple: the extensions are extremely helpful.
However, it is a good idea to keep things simple
enough so that your statements can be translated e
into this form. This will be discussed further in T
the section on structure, next month.

Numeric And String Functions
Figure 3 shows the most commonly implemented
numeric functions. Either most BASICs have these
functions, or the programmer using the machine
will be prepared to fake them somehow. Two
deserve special mention: RND and TAB.

RND is implemented differently on almost
every computer. Some use X =RND, some use

viada. e] D

X=RND(0), some use RND(1), some use RAN-
DOMIZE to start (seed) the random number gen-
erator and some do not. You should assume that
every line containing RND will have to be rewrit-
ten. You should make this as easy as possible, by
minimizing the number of lines involved and
making your intention clear. If you need a random
number in 20 different places in your program,

do not have RND appear in 20 places; place it in a
subroutine. That is, incorporate in your program

000 REM x¥x GET RANDOM NUMBER,
E FOR OTHER COMPUTERS x&x
X=RND (1) :REM RANDOM,O0(X<1,NEW S
EQUENCE EACH RUN

2020 RETURN

and then place GOSUB 9000 wherever needed in
your program. Here is a more typical use, near
the start of a game program:

150 N =INT(100*RND) + 1 :REM RANDOM INTEGER
1 TO 100 **+5*xtttsssesss

CHANG

9010

Here the string of asterisks warns you, when
transporting the program, that the line is likely to
change. The remark tells what is wanted and will
save a lot of time if the new computer achieves
this by N =RND(100). '

Turning briefly to TAB : there are computers
that like TAB(N) (go to column N), those that like
SPC(N) (print N spaces), those that like both, and
those that like neither. Most people know how to
juggle spacing on their own machine, so making
your intention clear (by remarks or a sample print-
out) is probably more important than the exact
way you write your PRINT statements. There will
be more on this in the discussion of input-output,
next month.

The functions given in Figure 4 are now re-
markably widespread in microcomputers. 1t is
probably safe to use all of them freely in that con-
text. That is, if the person rewriting the program
40 COMPUTE! January. 1983

does not have LEFT$, he probably has a reasonbly
direct substitute. You cannot count on the format
produced by STR$ being the same from one
machine to another - some pad with blanks on
the left, some on the right, some not at all. Func-
tions that match a substring are present on many
machines, but absent on many others. Many sys-
tems will crash if you call LEFT$(A$,N) and A$
has less than N characters, so you should always
test for this before you call LEFT$ even if your
system does not insist on it.

Large computers differ substantially in how
they handle strings, and are often more restrictive
than small computers. ASC and CHRS$ are fre-
quently absent; many large computers do not
even use the ASCII character set. Avoid extensive
string manipulations, or at least place them in a
subroutine, if your program may have to run on a
large mainframe next year.

Readability

Next, if our program is to be readily transportable
to another version of BASIC, it must be readable.
First, can the reader understand our individual
lines, and translate them for the new system?
Second, can the reader understand our general
strategy or procedure (our algorithm) well enough
to debug the program if errors creep in, or if his
BASIC interprets some command very differently
than expected?

The most important consideration, for the
second of these, is to make the program suffi-
ciently modular and to provide appropriate
REMarks for each module; this is addressed more
in the discussion of structure, later. There are a
number of ““tricks of the trade” that make indi-
vidual lines easier to read, however. Here are a
few principles:

1. Leave plenty of space between line num-
bers. Even if you have only one command per
line, some one-line commands on your system
may become multiple commands on another. If
you use several commands per line, the situation
gets far worse. This is not to condemn all multiple-
command-per-line statements, since they can add
to the clarity of the program. Just remember that
while your computer may allow:

500 INPUT “WHAT IS YOUR NAME?"; N$
someone else’s may require

500 PRINT “WHAT IS YOUR NAME”;
501 INPUT N$

This is an easy change if you left a line number
available. It is quite possible for a complex one-line
statement on one system to require six or eight
lines on another.

2. Leave plenty of blanks in your commands,

where appropriate. You may have no trouble
understanding 250PRINTT5 or 300FORI5 =PTOM

WE'VE MADE
RECKLESS DRIVING AN
INDOOR SPORT.

Grab the wheel in Hazard Run, our high-speed
cross-country chase . . . and watch the feathers
fly! This exciting game features four progressively
tougher runs, plus one random run. Smash through
the brush, snake around trees and boulders, leap
ponds in a single bound, and
maneuver on just two wheels.
It’s all part of the fast moving,
fine-scrolling white-knuckle
action of Hazard Run, 100%
assembly language play that
flexes your Atari graphics to the

max! For more fun than the Program by Dennis Zander

law should allow, get Hazard Run at your local

computer store, or write or call today.

100% assembly language program for the ATARI 400/800

16K Cassette $27.95* 25K diskette $31.95*)

ALSO AVAILABLE: Strip Poker, Adult fun for the ATARI 400/800
and APPLE I140K diskette $34.95*

*Add $2. for postage and handling. N.Y.residents add 7% sales tax.
r—————————————————

Get it in gear . . . send in this coupon
or call toll-free 800-828-6573

ARTWORKX Software Co., Inc. 150 North Main St., Fairport, NY 14450 (716) 425-2833

Please send me Hazard Run program(s)
Please send me Strip Poker program(s).
OEnclosed is my check for $. Billmy {0 VISA [J MasterCard

NUMBER EXP. DATE

Signature >

Name (please print)
Address
City State Zip
O Please send free ARTWORX catalog.

L So you can play.

but a reader will find 250 PRINT T5 and 300 FOR
I5=P TO M much easier to copy or edit. Many
BASICs do insist on the spaces; the new IBM Per-

| sonal Computer is one that does. Your computer

may allow a larger program or run faster if you
delete spaces and remarks, but you make the pro-
gram much harder to transport when you delete
them. It may be worth keeping two programs, a
transportable copy and a condensed, quick-run
copy.

3. Avoid unprintable characters. Where a few
are necessary, find a way to make their presence
visible. For instance, a disk read in Applesoft re-
quires that you PRINT a CONTROL-D followed
by a string. You can make this readable by

200 D$ = CHR$(4) :REM CONTROL-D

540 PRINT D$;”OPEN FILENAME"” :REM DOS
COMMAND STARTS CTRL-D

Jtis a good idea to indicate what other CHR$
characters are when they are created, too — for
instance when CHR$ is used to put a quote mark
into a string, or manipulate carriage returns or
line feeds.

4. Identify specific features you depend on.
This happens most often in connection with
PRINT and INPUT statements. Most of us can
guess what someone else’s PRINT statements are
supposed to do, but the INPUTSs are another
matter.

Some systems input a sentence like “TODAY
IT RAINS” by INPUT A$ and the response
?TODAY IT RAINS; others by INPUT A$ and
response ?“TODAY IT RAINS”; others by INPUT
LINE A$ or by LINPUT A$ or even by INPUT
(FIELD 40) A$. You can make this clear to the
reader — so that he can try to do the appropriate
thing on his system — by remarks, but clear user
instructions within the program are probably even
better. For example,

110 PRINT “TYPE IN A SENTENCE SURROUNDED

BY QUOTE MARKS”

120 INPUT A$:REM SAMPLE “HELLO, JOE,
WADDAYA KNOW.”

5. Make cues to the user extremely clear. Re-
member that you won't be around to show people
how to use it; in fact, no expert on the program
will be around. Give sample answers whenever
possible, and protect against invalid answers.

130 PRINT"DO YOU WANT TO PLAY AGAIN (
Y/NY " ;

130 INPUT A%

150 IF A$="N" THEN 9999

160 IF A$<>"Y" THEN 130

Note that invalid answers will cause the question
to be asked again.

Next month, examples of portable progrant structure,
input-output, and graphics programmiing. (o)

PUBMNNNNSNNNRIIIENNN__————

ettt i

_ SRR

| Part i:

Writing 1

This concludes a two-part article on writing BASIC
programs so that they are more easily read, revised, or
translated to run on different computer brands. Though
not everyone will agree with the goal (general-purpose
BASIC), or the approach (structured programming),
many of these suggestions are potentially useful to those
programmers who later revise and improve their own
programs. For contrast, see the views of some of the
programmers quoted in “"How The Pros Write Computer
Games,”’ elsewhere in this issue.

e

N

Structure , ,

The major tool in making a program transportable
is careful attention to program structure. This
does not mean slavish adherence to “’structured
programming.”’ It does mean using common sense
and some of the important tools available to keep
programs from becoming “spaghetti bowls” of
GOTOs. This can include “structured program-
ming”’ when applicable. .

To consider a concrete example, suppose we
have two branches in our code governed by
GOTO. A simple version might be:

500 IFX>2THENT=T+Y: C=C+2ELSET=T+Z:

C=C+1
There is certainly no objection to writing this in
one line if your BASIC allows it; the intent is clear.
Remember that you should leave space for new
lines, since someone may have to rewrite this as:

500 IF X>2 THEN 504

501 T = T+Y

502 C = C+2

503 6OTO 507

508 T = T+Z

505 C = C+1

507 REM ENDIF _

Even this is still quite readable. It is clear where
the IF starts and where its effect ends. A far worse
example (but painfully common in beginners’
programs) would have IF X>2 THEN 4000 and

then down at line 4000 would have:
4000 Tf-:T+Z: C=C+1:GOTO 510

This is hard to read: how, when checking line
4000, can you know where it relates to the rest of
the program? Reading lines 500-510, how can you
understand the options of the other path?

My own practice, incidentally, is to avoid
GOTOs over long distances, avoid upward

56 COMPUTE! Fobnxxy. 1983

Edward Ordman

GOTOs unless they are part of a fairly formal struc-
ture, and have GOTOs go to REM statements in a
great many cases. Suppose, in the example above,
fine 510 was PRINT TAB(C);X;TAB(C +5); Y and
some variation in the new machine meant that
this had to be expanded to two lines to get the
right spacing. A GOTO 510 in line 503 means that
a line 509 cannot be introduced without other
changes; the 507 REM means changes in the
PRINT do not require changes in the IF.

A similar situation arises in programs where
there is a large loop (PLAY AGAIN in a game)
and some initialization before it. If you start

1 PRINT "WELCOME TO THE GAME®
2T =0 .

3 X = RND(1)

4 Y =1 _

the person rewriting this may type 2T=0:
X=RND(1): Y=1, and be in big trouble when he
discovers that at line 5560 you have GOTO 4. He
will be in more trouble when he revises the pro-

" gram and needs to add another statement within

the main loop, but before Y=1. Compare the

- program:

10 PRINT “WELCOME TO THE GAME"
20 T = 0:X = RND(1):REM INITIALIZE, OC

X<1

30 REM ENTER MAIN LOOP HERE

40 Y = 1 :REM COUNT NUMBER OF ATTENP
TS

5560 GOTOD 30 :REM REPEAT MAIN LOOP

In this version, the rewriter will not confuse line
20 and line 40; a line 35 can be added; and there is
no confusion as to exactly where the GOTO is

leading, even after several program revisions. In

general, do not GOTO “'the middle”’ of a line of
reasoning without clearly labeling why and pro-
viding an easy way to make changes without ex-
tensive rewriting.

If you really want to avoid upward GOTOs
in as many cases as possible (and it does make
programs easier to read!), there are two alternative
structures that are important: GOSUB ... RETURN
and the DO ... WHILE. First, let us consider the
DO...WHILE. :

DO...WHILE can be regarded as an extension
of FOR...NEXT. A typical form is: :

1000 DO WHILE X>10
1010 PRINT X

1020 T = T+X

1030 X = X/2

1040 ENDWHILE

PR SPIENEE o o T —— . -

Suppose X is 50 when this is entered. Lines 1010-
1030 will be done for X=50, for X= 25, for X=12.5;
then X will become 6.25, the test will fail, and the
program will go on after line 1040. This is a re-

- markably useful thinking tool, even if your BASIC

does not have these statements (many do not).

" But, for transportability, 1 would argue against

using these statements even if you have them.

There is, however, nO reason at all not to think in

terms of DO...WHILEand then to write an imita-

tion of it:

1000 IF X<=10 THEN 1040 :REM DO WHILE
x>10 TO LINE 1040

1010 PRINT X N

1020 = T+X

1030 X = X/2

1035 GOTD 1000

1040 REM END WHILE

/

Again, this is easy to read, the upward GOTO s
clearly explained, and the reader is in no doubt as
to the scope of the loop and where you enter and
leave it.

Subroutines Are Best

Subroutines — the facility provided by GOSUB
and RETURN - are the single most important
feature in providing transportability. Thereisa
strong case to be made for dividing every program
of more than a few dozen lines, and many shorter
ones, into subroutines. Ideally, each subroutine
should have a purpose that you can describe in
one or two lines, and that explanation should be
given in remarks at the head of the subroutine.
The subroutine should not interact with the rest
of the program except as provided in the leading
remarks. An example:

£000 REM SUBROUTINE 70O CONVERT 70 PO
LAR COORDINATES
6001 REM GIVEN X, ¥ COORDINATES. RET
URN R=RADIUS, T=ANGLE.
6002 REM X, Y UNCHANGED.
1IF R=0.
6003 REM -
6010 R=SOR(XEX_+ Y¥V) ,
6020 IF R = O THEN T = 0 : RETURN
6030 1IF X<>0 THEN T = ATN(Y /XY = RETU
RN : REM ARCTANGENT,'RADXANS(
6040 IF Y 2 O THEN T = 3.14159/2
2050 IF Y < 0 THEN T = -3.14159/2
6090 RETURN
1t is entirely appropriate for subroutines to
call other subroutines, or for a main program to
consist primarily of subroutine calls, with all the
real work done in the subroutines. But when this
isdone,ﬂisevenrnorehnponanttornakesure
thatﬂuzaﬂxouﬁnescanbedcbuggedsepanﬂdy
— that they do not, for instance, change the variable
used elsewhere, but not mentioned in'the

headnote. .

Where you are using a feature that you know
js particular to your computer - for instance, disk
input/output - itis especially important to isolate

it in a subrouting, and label it as machine-

RETURN T=0

oy Ao B

dependent. This means that it can be rewritten
later with a minimum of change to the main pro- .
gram logic. : .

Make Input/Output General
1t is very likely that anyone rewriting a program
for another machine will have to revise input/
output statements. This applies to PRINT and
INPUT for keyboards, terminals, CRTs, and print-
ers; to cassette and disk storage; to game control-
lers and joysticks; and to all other peripherals.
Essentially the only #inimal” features that all
machines have in common are INPUT X and
PRINT X,Y,Z, and even these are not as standard
as one might like. The usual solution is to stick to
minimal formatting, if you consider transportabil-
ity of prime importance; or to place fancy input/
output in subroutines and indicate your intention
clearly, if itis essential to the program. Here we
can give only a quick guide to some of the tricks
and pitfalls.

INPUT Some computers allow you to cue the

PR RN

~ user (prompt) as desired, e.g., INPUT ““YOUR

NEXT GUESS?”";N while others do not. The others

can fake it by PRINT #YOUR NEXT

GUESS”;:INPUT N getting the question mark on

the same line as the printout. Many BASICs will

not allow suppression of the question mark. In-

putting string variables, particularly with embed-

ded spaces or cCOmMmas, also differs dramatically

from system to system, as mentioned earlier. If

your program depends heavily on a precise form

of string input, place the input routine in a sub-

routine and explain the purpose carefully. For ex-

ample: ,

2000 REM STRING S% WILL BE ALL CHARA
CTERS TYPED (PRINTABLE OR NOT)

2001 REM UNTIL ENTER IS HIT (EXCLUDI
NG THE ENTER)

2010 8% = "*

2020 K$ = INKEY$:REH GETS SINGLE KE
y FROM KEYBOARD

2030 IF K$ = *“ THEN 2020

2040 IF ASC(K$) = 13 THEN 2090 :REM
CARRIAGE RETURN, OR ENTER

2050 5% = 5% + K%

2060 GOTO 2020

2090 RETURN

Of course, other machines may require substantial

rewriting of this subroutine, if the special word

INKEYS$ is not available or works differently. In

some microcomputers, the implementation may

be as easy as INPUT LINE S$. Still, having this in

asingle subroutine, rather than scattered through-

out the program, will simplify the job of rewriting

for a new machine.

PRINT Some computers allow statements
like PRINT “$""X*“000", without commas or
semicolons, and produce the output $4000 when
X is 4. Others require PRINT “$;X;"'000” and
produce $4 000 or something similar. Usually, a

clear indication (in a REMark) of what you want is

far more helpful than an ingenious trick to achieve
it on your machine. The exact meanings of comma
and semicolon differ from one machine to another:
it is universal that comma means “‘wide space;

‘arrange in columns” and semicolon means “’short
. space, or no space,” but the details differ. In many

configurations, TAB will not work properly (this

" is common when using a printer attached to an

Apple, for instance).

If you must engage in any fancier spacing
than use of commas and semicolons, explain your-
self in REMarks and leave it to the reader to im-
plement it on his machine. Many microcomputers
do not have PRINT USING; if you use it, an ex-
ample output line contained in a remark is very
helpful. If you use a fancy PRINT statement re-
peatedly in your program, consider placing it to a
subroutine where the reader will have to translate
it only once.

CLEAR There are a number of special com-
mands whose implementation differs from one
computer to another. Some examples are Clear
Screen, Go to top-of-page, and similar ones.
(Varying print character width, for instance, is
usually a function of the printer model, not of the
BASIC.) If at all possible, place these functions on
a line by themselves and remark clearly; it will
then be easy for the reader to translate them, or
delete them if inapplicable to the new system.

Joysticks These also differ dramatically from
one system to another. Again, place themina -
clearly labeled section of the program, preferably

_ a subroutine, and label what they do. In particular,

avoid repeating these statements numerous places
within the program. Example:
1050 GOSUB S000 : REM READ PADDLES

2300 GOSUB 5000 :

5000 REM READ PADDLES X,Y —— VALUES
ARE 0 - 255, SCALE TO o - 100

5010 X = PDL(0)/2.55

5020 Y = PDL(1)/2.55

5030 RETURN

Clearly, someone whose paddle-reading com-
mands are different, or give valuesin a different
range, can easily rewrite this subroutine.

Tape/Disk While the particular statements -
involved in tape and disk input/output differ for
almost every system, the general functions to be
performed are almost identical. Typically, one
must specify a file name and number by which it
will be referred, and whether it will be for input
(READ or INPUT), or output (WRITE or PRINT),
or both. A typical statement is something like
OPEN “DATAFILE” AS 1 FOR INPUT. If your
BASIC allows omitting some of this, include it in
a REMark. For example,)

1050 PRINT D$; “OPEN INPUT";F$:REM OPEN F$,

SEQUENTIAL, INPUT ONLY

is acceptable if you only have one file open ata

60 - COMPUTE! February. 1983

time; the reader can insert an AS #1 if the new
system requires it. Once you have opened a file,
you must read from it or write to it, typically by a
statement such as READ #1, A,B,C or PRINT
#3,A;C$;B;C$;X :REM C$=",". - '

Notice that if your system does not require a
specific indication in the statement that it refers to
a file, you should include one in a REMark. Itis
an excellent idea to write commas as field dividers
to a file, even if your system will permit a space
as a divider on input. Enough systems insist on
the comma that it decreases portability to omit it.
A statement such as

1060 REM A TYPICAL LINE OFFILEIS 4,5,
DEBITS, 2.95 (CR)

will often make the program much clearer to the
reader than it is from just the line ‘

INPUT#3 P(K),Z(K),D$,A(D

In the case of a direct access file, most systems
also need to know the record length and record
number for each read or write. If a direct access
file is opened for updating, you should read a
record before you write it. Finally, on any type of

- file, you should remember to close it explicitly
(usually CLOSE #3 or some variant). Even if your

BASIC does not insist on this, someone else’s
will; and it can be hard to figure out when to do
the closing in a strange program. .

A program using no files is more easily trans-
portable thari one using files; the fewer the files,
the more transportable. (Avoid opening more
files than needed at one time.) Sequential files are
easier to move than direct access files; files read
or written ““all-at-once” are more transportable
than ones that are read or written only intermit-
tently. If at all possible, structure a program like
this: o
1000 GOSUB 7500 : REM READ WHOLE FILE

INTO AN ARRAY
.... zREM MAIN PROGRAM ACTS ON THE

ARRAY

‘4000 GOSUB 7700 : REM WRITE WHOLE ARR

AY BACK OUT TO FILE
4010 GOTO 9999
so that all file-handling is confined to specific
subroutines and the files can be kept on a cassette
tape even without fancy automatic stop-start
features.

Graphics

If we view BASIC as something almost geological,
something that has had layers added over time,
graphics capabilities are the last layer, and the
layer least solidified. Graphics differ more from
machine to machine than any other feature. Fancy
graphics tricks are the very hardest thing to trans-
port from one system to another. Still, it s possiblt
to do some graphics work and still limit the prob-
lems when moving them to another system.

.._,-_..__':u' abdibboninipmsininsiogie

B et

Generally, it is easiest to transport a program
that uses only “character’” graphics. 1f we view
the screen as consisting of a fixed number of rows
and a fixed number of columns, then each position
can be occupied by one letter or “character.” If
we confine ourselves to commonly available char-
acters, our program should be capable of being
rewritten for most systems. If it does not involve
moving pictures, it should even be possible to
runitona printer-oriented system in marny cases.

As you know, common systems do differ in
screen size (in number of characters in a row or
column). The first thing we must do is let the
reader know what assumptions we have made:

50 M1=16=REM NUMBER OF LINES ON SCREEN

60 M2=40 :REM NUMBER OF CHARACTERS PER
LINE

From this point on; we should place everything
in terms of the numbers M1 and M2, not 16 and
40. Further, to position a given character C$ at
coordinates X,Y (that is, X across and Y down:
position X of row Y), we should set X, Y, and C%
and then call a subroutine. On the IBM Personal
Computer, we print an A" in the center of the

screen by

-

100 X=INT (M2/2) sY=INT{(M1/2) :Cs="A"
110 GOSUB 7000 ’ :

7000 REM SUBROUTINE TO WRITE C$ AT
POSITION X DVER, Y DDUWN EXTEEX

7010 LDCATE YeX 3 PRINT C$;

7020 RETURN

Again, the user of any given computer can rewrite

this subroutine as a whole far more easily than he
can rewrite statements like LOCATE 12,40: PRINT
#A"; which are scattered throughout the
program.

Sometimes a screen is built up by “jumping
around,”” rather than line-by-line. If you wish to
get hard copy of such a screen, and lack a built-in
operating system procedure to do so, you can
have the subroutine just mentioned build an array
by 7015 S(X,Y) = ASC(CS) (or 7015 S$(X,¥) = C%)
and later print the entire array. This may be as
easy as:

8000 REM PRINT THE SCREEN STORED IN
ARRAY S(M2,M1) E$EFTETEEEXLE

8010 FOR 1 = 1 7O M2

8020 FOR J = 1 70 M1

8030 PRINT CHR$ (5(J,1))3 :REM 3 LEAVE
& ND SPACE ON 1BM PERSONAL COMP

8040 NEXT J
8050 PRINT s:REM 60O TO NEXT LINE - DE
' LETE IF IT CAUSES DOUBLE SPACING

8060 NEXT 1
g070 RETURN

Note that this program must contain a line such as

70 DIM S(80,24) .REM SAVE SCREEN. NOTE DIM
S{iM2,M1)

so that a person changing M1 and M2 will know

62 COMPUTH Februory. 1983

how it changes the DIM statement. :

A remarkable assortment of graphics effects
may be achieved just by the skillful use of standard:
characters: minus signs or underscores for hori-
zontal lines, ones or a special symbol for verticals,
and so on. Itis not hard to generate pictures by
hand: hold a piece of window screen OVera pic-
ture, judge the amount of darkness as best you
can (most people can rate darkest, dark, middle,
light, clear”) and use characters such as MI:.
and space to represent them. Some scaling may
be needed; in many systems the space allocated
for a character is 1 2/3 to 2 times as tall as it is wide.
Fill-in-the-blanks effects, on screen or paper, may
be achieved by using minus signs as underscores:

SOCIAL SECURITY NUMBER ?__-_~__

Turning now to “high-resolution” graphics,
or other extended graphics features, we find that
most of them still can be expressed in terms of X-
Y coordinates and making a specific mark at spe-
cific coordinates, although the mark is now usually
“on’ or “‘off”” or “COLOR 7" instead of a letter.
The same principle as before applies: specify the
maximum size involved; if at all possible give
dimensions as fractions of M1 and M2 rather than
absolute numbers; and keep the actual writing in
as few subroutines as possible. ’

In general, have one subroutine that draws a

oint: another that draws a line by making re-
peated GOSUBs to the subroutine to mark points;
and so on. Even if your computer has built-in
line-drawing commands, place them in sub-
routines (instead of HLIN 20,50 TO 30,40 write
X1 =50: Y1=20: X2=40: Y2=30: GOSUB 2600
where 2600 has the line HLIN Y1,X1 TO Y2,X2),
so that a person whose computer lacks them can
try to write a reasonable imitation.

If you write carelessly, or depend too heavily
on features of a particular machine, you can have
a program that s very hard to translate to any
other machine. If you want to be able to move
your programs to a new, different machine, or
have them run on a {riend’s machine oron a
machine at school, you must plan ahead when
you first write the program.

It takes relatively little extra effort to write a
transportable program, and there are many fringe
benefits. You yourself will find the program easier
to test, debug, or reread a few months later.

A little avoidance of particular machine “special
features,” a little use of good structuring practices,
and some care to isolate likely-to-change features
in labeled subroutines, can pay off in far easier
maintenance and rewriting. And if it means that
some published programs will run on a larger
variety of machines than they used to, it will pay
off for all of us.

