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 776 ELEMENTARY PROBLEMS AND SOLUTIONS [September

 suppose that the desired f exists. We note first that if {r,} is a sequence of rationals
 which converges to an irrational, then f(r) -+ 0, and likewise if {yn} is a sequence
 of irrationals which converges to a rational, then f(y) -+ 0. Now let g: R -+ R
 agree withf on I and vanish on Q. Then Q is the set of points where g is continuous,

 so that it must be a G, set. But it is not, by the Baire Category Theorem.

 Alternatively, we can let h: R - R agree with f on Q and vanish on I. Since h is

 Lipschitzian on I and discontinuous on Q, I must be a set of the first category by

 Theorem 4 of G. A. Heuer, A property of functions discontinuous on a dense set,

 this MONTHLY, 73 (1966), 378-379. But it is not, again by the Baire Category Theorem.

 II. Solution by Pavel Kostyrko, Bratislava, Czechoslovakia. We characterize

 such functions in the following theorem.

 THEOREM. Let (M, d) be a metric space, and suppose that X C M and
 Y = M \ X. Then there exists a (strictly) positive function f: M -+ R such that

 (1) f(x)f(y) ? d(x, y) for all x E X, y E Y

 if and only if both X and Y are F, sets in M. [Note that if X = 0 or Y = 0, then
 (1) is vacuously satisfied-Ed.]

 Proof. Suppose that such a function f exists and let X, = {x e X: f(x) > 1/n}
 for n = 1, 2, **. We show that In C: X for all n, where Z denotes the closure of Z
 in M. Suppose to the contrary that there exists a positive integer m and a y such

 that y E Tm \ X. Then y E Y and there exists a sequence {Xk} of elements of Xm such

 that Xk + y . Whence f(y)/m _ f(Xk)f(y) ? d(Xk, y) -+ 0, implying that f(y) = 0,
 a contradiction. It follows that

 00 00

 X = U X, C UA'r c X
 n=1 n=1

 so that X is an Fa set in M. The proof for Y is analogous.

 Conversely) suppose that X and Y are F, sets in M. Write X = Un1 F and
 Y = U n 1 F*, where F and F * are closed for n = 1,2, , and where we assume
 without loss of generality that F1 a F2 C , and F* a F_ C . The function f

 is defined as follows: If x E X, let n(x) denote the least positive n such that x E F, .

 Then define f(x) = min{d(x, F* x)), 1}. If y E Y, define f(y) analogously. It can then
 be verified by checking cases thatf has the required properties.

 The problem is now solved by noting that the set of irrationals in R with the

 usual metric is not an F, set by the Baire Category Theorem.

 III. Solution by Charles Schelin, Wisconsin State University, La Crosse. The

 answer is no. Suppose, to the contrary, that such a function exists. Let Q denote

 the set of rationals and H the set of irrationals. We note that if x is irrational and y

 is rational (or vice versa) then

 (* f(x) < .1.I x - vl
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 Let IO be any compact interval. Choose x1 E H n Io, where I' is the interior of IO.
 By (*) we can find a neighborhood N1 = (xl - 1, xl + 31) of xl such that if
 yE Q r) Nl, then f(y) < 1. Now choose a fixed y1 E Q r NN n I'; again by (*)
 we can find a neighborhood Ml = (Y i- l, y + il) of Yi such that if x E H n M
 then f(x) < 1 . Then for all t E Ml r) N1 r) I' it is true that f(t) < 1 . Select a non-
 trivial closed interval I, c Ml r) N1 r) I' c Io.

 Continuing this process, we obtain a nested sequence IO I of closed
 bounded intervals with f(t) < l/n for all t II,. By the Nested Interval Theorem,

 there is some w -fln I=j, forcing f(w) < l/n for every n; hence f(w) ? 0, a
 contradiction.

 Also solved by Sheldon Axler, Bill Beckmann, Harold Donnelly, Neal Felsinger, Peter Frankl
 (Hungary), Gary Gunderson, G. A. Heuer, Terjeki Jozsef (Hungary), Peter Kuhfittig, Harry Lass,

 P. L. Montgomery, E. T. Ordman, Wolfe Snow, David Sumner, and the proposer.

 Editorial Comment. Schelin's construction can be generalized as follows: Suppose that M is a

 compact metric space, and that Q is a subset of M such that both Q and its complement H are
 dense in every ball of positive radius. Then there cannot exist a strictly positive real-valued function f
 on Msuch that f (x) f (y) < d (x, y) for every xe Q and ye H. Schelin's proof is interesting because
 it does not explicitly use the Baire Category Theorem.

 The Compleat Cyclic Quadrilateral

 E 2311 [1971, 793]. Proposed by Huseyin Demir, Middle East Technical

 University, Ankara, Turkey

 Prove that, if a quadrilateral A1A2A3A4 can be inscribed in a circle, then the

 (six) lines drawn from the midpoints of ApAq perpendicular to ArAs (p, q, r, s distinct)

 are concurrent.

 Solution by Sister Stephanie Sloyan, Georgian Court College, Lakewood, N.J.

 Assume that the circle is the unit circle and identify the point Ai with the complex
 number ai in the usual manner. Then the line from the midpoint of the segment
 ApAq perpendicular to ArAs is given by

 7-arasz = 1(ap + a) aaq a aras
 apaq

 and it is easily calculated that all six lines pass through the point 1(a1 + a2 + a3 + a4).
 J. W. Clawson, The complete quadrilateral, Annals of Math. 20 (1918-1919),

 232-261, calls this point the orthic center of the quadrilateral.
 In a similar fashion one can show that the three lines joining the midpoint of

 ApAq to that of ArAs (p, q, r, s distinct) are each bisected by a point identified by
 Clawson as the mean center of the quadrilateral. Since the mean center is given by

 *(a1 + a2 + a3 + a4), it follows that it lies halfway between the orthic center and
 the circumcenter.
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