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 908 ELEMENTARY PROBLEMS AND SOLUTIONS [October

 Solution by Heiko Harborth, Braunschweig, Germany. Any two congruent

 convex polygons that are related by a translation have at most two points of inter-

 section, common arcs being considered as single points. If three such polygons meet
 in one point, then slight translations of one or two of them will form a small triangle

 in place of the point, increasing the number of regions by one. Thus we need only

 consider cases where the polygons intersect two by two in distinct points. A further

 permissible simplification now is the replacement of the convex polygons by circles.

 Then the Venn diagram for n such circles has n(n -1) vertices and 2n(n -1) edges

 or arcs (2n -2 of each on each circle). By Euler's formula, the number of faces is

 given by

 F = 2 + E-V = n2 _ n + 2 < 2

 when n > 4. Hence a Venn diagram for n > 4 sets cannot be formed from any

 convex set and n -1 translations of it.

 Also solved by Ken Brons, D. Z Djokovic, J. R. Kuttler, L. E. Mattics, E. T. Ordman, and F. G.

 Schmitt, Jr.

 Editor's comment. Schmitt notes that the proof for circles appears in Yaglom & Yaglom, Challen-

 ging Mathematical Problems with Elementary Solutions, Vol. I, 1964, 103-104.
 Five correspondents sent figures showing four congruent convex polygons (or ovals) forming a

 Venn diagram and related by translations and rotations. The figures below show such a diagram for
 rectangles (by G. A. Heuer, Concordia College) and for equilateral triangles (by the reviewer), each
 of which can be constructed using rotations only. The last figure (by the reviewer) shows four non-
 convex quadrilaterals related solely by translations. (The last two figures are not connected.)

 Subdivisions of a Polygon

 E 2315 [1971, 904]. Proposed by Richard Stanley, Harvard University

 Let f(n) be the number of ways an (n + 1)-sided convex polygon can be divided

 into regions by diagonals not intersecting in the interior of the polygon. The trivial

 division, that is the division using no diagonals, is to be counted, so thatf(1) = 1,

 f(2) = 1, f(3) = 3, f(4) = 11, etc. Find the generating function F(x)- Ef(n)x=,
 and find an asymptotic formula for f(n).
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